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Abstract Weprovide a rigorous derivation of theBrownianmotion as the limit
of a deterministic system of hard-spheres as the number of particles N goes to
infinity and their diameter ε simultaneously goes to 0, in the fast relaxation limit
α = Nεd−1 → ∞ (with a suitable diffusive scaling of the observation time).
As suggested by Hilbert in his sixth problem, we rely on a kinetic formulation
as an intermediate level of description between the microscopic and the fluid
descriptions: we use indeed the linear Boltzmann equation to describe one
tagged particle in a gas close to global equilibrium. Our proof is based on the
fundamental ideas ofLanford. Themain novelty here is the detailed studyof the
branching process, leading to explicit estimates on pathological collision trees.

1 Introduction

1.1 From microscopic to macroscopic models

We are interested here in describing the macroscopic behavior of a gas consist-
ing of N interacting particles of mass m in a domain D of Rd , with positions
and velocities (xi , vi )1≤i≤N ∈ (D×Rd)N , the dynamics of which is given by
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494 T. Bodineau et al.

dxi
dt

= vi , m
dvi
dt

= −1
ε

∑

j ̸=i

∇#
( xi − x j

ε

)
, (1.1)

for some compactly supported potential #, meaning that the scale for the
microscopic interactions is typically ε. We shall actually mainly be interested
in the case when the interactions are pointwise (hard-sphere interactions): the
presentation of that model is postponed to Sect. 2, see (2.1), (2.2).

In the limit when N → ∞, ε → 0 with Nεd = O(1), it is expected that the
distribution of particles averages out to a local equilibrium. The microscopic
fluxes in the conservations of empirical density, momentum and energy should
therefore converge to some macroscopic fluxes, and we should end up with
a macroscopic system of equations (depending on the observation time and
length scales). However the complexity of the problem is such that there is
no complete derivation of any fluid model starting from the full deterministic
Hamiltonian dynamics, regardless of the regime (we refer to [20,36,38] for
partial results obtained by adding a small noise in the microscopic dynamics).

For rarefied gases, i.e. under the assumption that there is asymptotically
no excluded volume Nεd ≪ 1, Boltzmann introduced an intermediate level
of description, referred to as kinetic theory, in which the state of the gas is
described by the statistical distribution f of the position and velocity of a
typical particle. In the Boltzmann-Grad scaling α ≡ Nεd−1 = O(1), we
indeed expect the particles to undergo α collisions per unit time in average
and all the correlations to be negligible. Therefore, depending on the initial
distribution of positions and velocities in the 2dN -phase space, the 1-particle
density f should satisfy a closed evolution equation where the inverse mean
free path α measures the collision rate.

In the fast relaxation limit α → ∞, we then expect the system to relax
towards local thermodynamic equilibrium, and the dynamics to be described
by somemacroscopic equations (depending on the observation time and length
scales).

One of the major difficulties to achieve this program (Fig. 1) using kinetic
models as an intermediate description is to justify the low density limit
α ≡ Nεd−1 on time intervals independent of α. Note that this step is also
the most complicated one from the conceptual viewpoint as it should explain
the appearance of irreversibility, and dissipation mechanisms.

The best result concerning the low density limit, which is due to Lanford in
the case of hard-spheres [28] and King [26] for more general potentials (see
also [13,21,44] for a complete proof) is indeed valid only for short times, i.e.
breaks down before any relaxation can be observed. The result may indeed
be stated as follows [21] (see also [37] for less restrictive assumptions on the
potential #).
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The Brownian motion as the limit… 495

ε ε   = α

α>>1

ε    >>1, ε  <<1

Fig. 1 Fluid equations of hydrodynamics canbe recovereddirectly from themicroscopic system
or in a two-step limit using Boltzmann’s kinetic equation as a mesoscopic description. Note that
these two procedures may lead to limiting equations with different transport coefficients since
the kinetic equation describes only perfect gases (without excluded volume in the state relation)

Theorem 1.1 Consider a system of N particles interacting

• Either as hard-spheres of diameter ε
• Or as in (1.1) via a repulsive potential#, with compact support, radial and
singular at 0, and such that the scattering of particles can be parametrized
by their deflection angle.

Let f0 : R2d +→ R+ be a continuous density of probability such that
∥∥∥∥ f0 exp

(
β

2
|v|2
)∥∥∥∥

L∞(Rd
x×Rd

v )

≤ exp(−µ)

for some β > 0, µ ∈ R.
Assume that the N particles are initially distributed according to f0 and

“independent”. Then, there exists some T ∗ > 0 (depending only on β and µ)
such that, in the Boltzmann-Grad limit N → ∞, ε → 0, Nεd−1 = α, the
distribution function of the particles converges uniformly on [0, T ∗/α]×R2d

to the solution of the Boltzmann equation

∂t f + v · ∇x f = αQ( f, f ),

Q( f, f )(v) :=
∫∫

Sd−1×Rd
[ f (v∗) f (v∗

1) − f (v) f (v1)] b(v − v1, ν) dv1dν

v∗ = v + ν · (v1 − v) ν, v∗
1 = v1 − ν · (v1 − v) ν, (1.2)

with a locally bounded cross-section b depending on # implicitly, and with
initial data f0. In the case of a hard-sphere interaction, the cross section is
given by
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496 T. Bodineau et al.

b(v − v1, ν) =
(
(v − v1) · ν

)
+.

Here, by “independent”, we mean that the initial N -particle distribution sat-
isfies a chaos property, namely that the correlations vanish asymptotically.
Typically the distribution is obtained by factorization, and conditioning on
energy surfaces (see [21] and references therein). In the case of hard-spheres
for instance, one would have

f 0N = Z−1
N f ⊗N

0 1DN
ε
,

with

DN
ε :=

{
(x1, v1, . . . , xN , vN ) ∈ TdN × RdN /∀i ̸= j, |xi − x j | > ε

}

and

f ⊗N
0 (x1, v1, . . . , xN , vN ) :=

N∏

i=1

f0(xi , vi ),

while ZN normalizes the integral of f 0N to 1.
The main difficulty to prove convergence for longer time intervals consists

in ruling out the possibility of spatial concentrations of the density leading to
some pathological collision process.

1.2 Linear regimes

In this paper, we overcome this difficulty by considering a good notion of
fluctuation around global equilibrium for the system of interacting particles.
In this way we get a complete derivation of the diffusion limit from the hard-
sphere system in a linear regime. Of course, in this framework one cannot hope
to retrieve a model for the full (nonlinear) gas dynamics, but – as far as we
know – this is the very first result describing the Brownian motion as the limit
of a deterministic classical system of interacting particles.

The main difficulty here is to justify the approximation by the linear Boltz-
mann equation

∂tϕα + v · ∇xϕα = −α Lϕα

Lϕα(v) :=
∫∫

[ϕα(v) − ϕα(v
′)]Mβ(v1) b(v − v1, ν) dv1dν

Mβ(v) :=
(

β

2π

) d
2

exp
(

−β

2
|v|2
)
, β > 0, (1.3)
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The Brownian motion as the limit… 497

for times diverging as α when α → ∞. Indeed, in the diffusive regime, the
convergence of theMarkov process associated to the linearBoltzmannoperator
L towards the Brownian motion is by now a classical result [27].

2 Strategy and main results

A good notion of fluctuation is obtained by considering the motion of a tagged
particle (or possibly a finite set of tagged particles) in a gas of N particles
initially at equilibrium (or close to equilibrium), in the limit N → ∞.

2.1 The Lorentz gas

If the background particles are infinitely heavier than the tagged particle then
the dynamics can be approximated by a Lorentz gas, i.e. by the motion of the
tagged particle in a frozen background. The linear Boltzmann equation has
been derived (globally in time) from the dynamics of a tagged particle in a low
density Lorentz gas, meaning that

• The obstacles are distributed randomly according to some Poisson distri-
bution.

• The obstacles have no dynamics, in particular they do not feel the effect of
collisions with the tagged particle.

This problem, suggested by Lorentz [31] at the beginning of the twentieth
century to study the motion of electrons in metals, is the core of a number of
works, and the corresponding literature includes a large variety of contribu-
tions. We do not intend to be exhaustive here and refer the reader to the book
by Spohn [42, Chapter8] for a survey on this topic. We state one basic result
due to Gallavotti [22] in the low density limit and then indicate some of the
many important research directions.

Theorem 2.1 Consider randomly distributed scatterers with radius ε in Rd

according to a Poisson distribution of parameter αε1−d . Let T t
ε be the flow

of a point particle reflected at the boundary of these scatterers. For a given
continuous initial datum f0 ∈ L1 ∩ L∞(R2d), we define

fε(t, x, v) := E[ f0(T−t
ε (x, v))].

Then, for any time T > 0, fε converges to the solution f of the linear Boltz-
mann equation (1.3), with hard-sphere cross-section, in L∞([0, T ], L1(R2d)).

A refinement of this result can be found for instance in [41] in terms of con-
vergence of path measures (and not only of the mean density), as well as in
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498 T. Bodineau et al.

[9] where the convergence is proven for typical scatterer configurations (and
not only in average).

These convergence statements lead naturally to various questions concern-
ing

• The assumptions on the microscopic potential of interaction,
• The role of randomness for the distribution of scatterers,
• The long time behavior of the system, in particular the relaxation towards
thermodynamic equilibrium and hydrodynamic limits.

The first point was addressed by Desvillettes, Pulvirenti and Ricci [16,17].
Their goal was to derive “singular” kinetic equations such as the linear Boltz-
mann equation without angular cut-off or the Fokker-Planck equation, from
a system of particles with long-range interactions. They have obtained partial
results in this direction, insofar as they can consider only asymptotically long-
range interactions. Due to the fact that the range of the potential is infinite in
the limit, the test particle interacts typically with infinitely many obstacles.
Thus the set of bad configurations of the scatterers (such as the set of con-
figurations yielding recollisions) preventing the Markov property of the limit
must be estimated explicitly. Even though the long-range tails add a very small
contribution to the total force for each typical scatterer distribution, the non
grazing collisions generate an exponential instability making the two trajecto-
ries (with and without cut-off) very different. The complete derivation of the
linear Boltzmann equation for long-range interactions is therefore still open.

It is often appropriate from a physical point of view to considermore general
distributions of obstacles than the Poisson distribution. In particular, in the
original problem of Lorentz, the atoms of metal are distributed on a periodic
network. For the two-dimensional periodic Lorentz gas with fixed scatterer
size, Bunimovich and Sinai [10] have shown the convergence, after a suitable
time rescaling, of the tagged particle to a Brownian motion. Their method
relies on techniques from ergodic theory: it uses the fact that the mapping
carrying a phase point on the boundary of a scatterer to the next phase point
along its trajectory can be represented by a symbolic dynamics on a countable
alphabet which is an ergodic Markov chain on a finite state space. Another
important research direction, initiated by Golse, is to consider the periodic
Lorentz gas in the Boltzmann-Grad limit. In this case there can be infinitely
long free flight paths and the linear Boltzmann equation is no longer a valid
limit [12,23,32,33], but the convergence toward a Brownian motion can be
recovered after an appropriate superdiffusive rescaling [34].

In [18,19], Erdös, Salmhofer and Yau obtained the counterpart of the long
time behavior for random quantum systems. Our approach is closer to their
method than to the ones used for the periodic Lorentz gas (even though the
setting of [19] deals with a fixed random distribution of obstacles and a slightly
different regime, known asweak coupling limit). Their proof is indeed based on
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The Brownian motion as the limit… 499

a careful analysis of Duhamel’s formula in combinationwith a renormalization
of the propagator and stopping rules to control recollisions.We refer also to [14]
for further developments on the quantum case.

2.2 Interacting gas of particles

We adopt here a different point of view, and consider a deterministic system
of N hard-spheres, meaning that the tagged particle is identical to the particles
of the background, interacting according to the same collision laws. In this
paper, we will focus on the case d ≥ 2 (and refer to [43] for results in the
case d = 1).

On the one hand, the problem seems more difficult than the Lorentz gas
insofar as the background has its own dynamics, which is coupled with the
tagged particle. But, on the other hand, pathological situations as described in
[11,12,23] are not stable: because of the dynamics of the scatterers, we expect
the situation to be better since some ergodicity could be retrieved from the
additional degrees of freedom. In particular, there are invariant measures for
the whole system, i.e. the system consisting in both the background and the
tagged particle.

Here we shall take advantage of the latter property to establish global uni-
form a priori bounds for the distribution of particles, and more generally for
all marginals of the N -particle distribution (see Proposition 4.1). This will be
the key to control the collision process, and to prove (like in Kac’s model [25]
for instance) that dynamics for which a very large number of collisions occur
over a short time interval, are of vanishing probability.

Note that a similar strategy, based on the existence of the invariant measure,
was already used by van Beijeren, Lanford, Lebowitz and Spohn [7,30] to
derive the linear Boltzmann equation for long times.

Let us now give the precise framework of our study. As explained above, the
idea is to improve Lanford’s result by considering fluctuations around some
global equilibrium. Locally the N -particle distribution fN should therefore
look like a conditioned tensorized Maxwellian.

In the sequel, we shall focus on the case of hard-sphere dynamics (with
mass m = 1) to avoid technicalities due to artificial boundaries and cluster
estimates. We shall further restrict our attention to the case when the domain
is periodic D = Td = [0, 1]d (d ≥ 2).

Themicroscopicmodel is therefore given by the following systemofODEs:

dxi
dt

=vi ,
dvi
dt

=0 as long as |xi (t)−x j (t)| > ε for 1 ≤ i ̸= j ≤ N ,

(2.1)

123

Author's personal copy



500 T. Bodineau et al.

with specular reflection after a collision

vi (t+) = vi (t−) − 1
ε2

(vi − v j ) · (xi − x j )(xi − x j )(t−)

v j (t+) = v j (t−)+
1
ε2

(vi − v j ) · (xi − x j )(xi − x j )(t−)

⎫
⎪⎬

⎪⎭

if |xi (t) − x j (t)| = ε. (2.2)

In the following we denote, for 1 ≤ i ≤ N , zi := (xi , vi ) and ZN :=
(z1, . . . , zN ). With a slight abuse we say that ZN belongs to TdN × RdN

if XN := (x1, . . . , xN ) belongs to TdN and VN := (v1, . . . , vN ) to RdN .
Recall that the phase space is denoted by

DN
ε :=

{
ZN ∈ TdN × RdN /∀i ̸= j, |xi − x j | > ε

}
.

We now distinguish pre-collisional configurations from post-collisional ones
by defining for indexes 1 ≤ i ̸= j ≤ N

∂DN±
ε (i, j) :=

{
ZN ∈TdN ×RdN / |xi − x j |=ε, ± (vi−v j ) · (xi−x j )>0

and ∀(k, ℓ) ∈ [1, N ]2\{(i, j)}2, |xk − xℓ| > ε
}
.

Given ZN on ∂DN+
ε (i, j), we define Z∗

N ∈ ∂DN−
ε (i, j) as the configuration

having the same positions (xk)1≤k≤N , the same velocities (vk)k ̸=i, j for non
interacting particles, and the following pre-collisional velocities for particles
i and j

v∗
i := vi − 1

ε2
(vi − v j ) · (xi − x j )(xi − x j )

v∗
j := v j +

1
ε2

(vi − v j ) · (xi − x j )(xi − x j ).

Defining the Hamiltonian

HN (VN ) :=
1
2

N∑

i=1

|vi |2,

we consider the Liouville equation in the 2Nd-dimensional phase space DN
ε

∂t fN + {HN , fN } = 0 (2.3)

123

Author's personal copy



The Brownian motion as the limit… 501

with specular reflection on the boundary, meaning that if ZN belongs
to ∂DN+

ε (i, j) then

fN (t, ZN ) = fN (t, Z∗
N ). (2.4)

We recall, as shown in [1] for instance, that the set of initial configurations
leading to ill-defined characteristics (due to clustering of collision times, or
collisions involving more than two particles) is of measure zero in DN

ε .
Define the Maxwellian distribution by

M⊗s
β (Vs) :=

s∏

i=1

Mβ(vi ) and Mβ(v) :=
(

β

2π

) d
2

exp
(

−β

2
|v|2
)
. (2.5)

An obvious remark is that Mβ is a stationary solution of (1.2), and any func-
tion of the energy fN ≡ F(HN ) is a stationary solution of the Liouville
equation (2.3). In particular, for β > 0, the Gibbs measure with distribution
in TdN × RdN defined by

MN ,β(ZN ) :=
1
ZN

(
β

2π

) dN
2

exp(−βHN (VN )) 1DN
ε
(ZN )

= 1
ZN

1DN
ε
(ZN )M

⊗N
β (VN ) (2.6)

where the partition function ZN is the normalization factor

ZN :=
∫

TdN×RdN
1DN

ε
(ZN )M

⊗N
β (VN ) dZN =

∫

TdN

∏

1≤i ̸= j≤N

1|xi−x j |>ε dXN ,

(2.7)

and is an invariant measure for the gas dynamics.
In order to obtain the convergence for long times, a natural idea is to

“weakly” perturb the equilibrium state MN ,β , by modifying the distribution
of one particle. In other words, we shall describe the dynamics of a tagged
particle in a background initially at equilibrium. Actually this is the reason
for placing the study in a bounded domain, in order for MN ,β to be integrable
in the whole phase space. Moreover we have restricted our attention to the
case of a torus in order to avoid pathologies related to boundary effects, and
complicated free dynamics.

The strategy of perturbating MN ,β is classical in probability theory; follow-
ing this strategy
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502 T. Bodineau et al.

• we lose asymptotically the nonlinear coupling: we thus expect to get a
linear equation for the distribution of the tagged particle;

• we also lose the feedback of the tagged particles on the background: since
this background is constituted of N ≫ 1 indistinguishable particles, the
momentum and energy exchange with the tagged particle has a very small
effect on each one of these indistinguishable particles and thus does not
modify on average the background distribution. As a consequence, the
limiting equation for the distribution of the tagged particle should be non
conservative.

What we shall actually prove is that the limiting dynamics is governed by the
linear Boltzmann equation (1.3) with hard-sphere cross-section.

2.3 Main results

For the sake of simplicity, we consider only one tagged particle which will be
labeled by 1with coordinates z1 = (x1, v1). The initial data is a perturbation of
the equilibrium density (2.6) only with respect to the position x1 of the tagged
particle. Consider ρ0 a continuous density of probability on Td and define

f 0N (ZN ) := MN ,β(ZN )ρ
0(x1). (2.8)

Note that the distribution f 0N is normalized by 1 in L1(TdN ×RdN ) thanks to
the translation invariance of Td and that

∫
Td ρ0(x)dx = 1.

The main result of our study is the following statement.

Theorem 2.2 Consider the initial distribution f 0N defined in (2.8). Then the
distribution f (1)N (t, x, v) of the tagged particle is close to Mβ(v)ϕα(t, x, v),
where ϕα(t, x, v) is the solution of the linear Boltzmann equation (1.3) with
initial data ρ0(x1) and hard-sphere cross section. More precisely, for all t > 0
and all α > 1, in the limit N → ∞, Nεd−1α−1 = 1, one has

∥∥ f (1)N (t, x, v)−Mβ(v)ϕα(t, x, v)
∥∥
L∞(Td×Rd )

≤C

[
tα

(log log N )
A−1
A

] A2
A−1

,

(2.9)

where A ≥ 2 can be taken arbitrarily large, and C depends on A,β, d
and ∥ρ0∥L∞ .

In [7,30], the linear Boltzmann equation was derived for any time t > 0 (inde-
pendent of N ). In comparison, our approach leads to quantitative estimates on
the convergence up to times diverging when N → ∞. As we shall see, this
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The Brownian motion as the limit… 503

is the key to derive the diffusive limit in Theorem 2.3. Theorem 2.2 proves
that the linear Boltzmann equation is a good asymptotics of the hard-sphere
dynamics, even for large concentrations α and long times t . It further provides
a rather good estimate on the approximation error. Up to a suitable rescaling
of time, we can therefore obtain diffusive limits.

In the macroscopic limit, the trajectory of the tagged particle is defined by

+(τ ) := x1
(
ατ
)

∈ Td . (2.10)

The distribution of +(τ ) is given by f (1)N (ατ, x, v). In the following, τ repre-
sents the macroscopic time scale.

Theorem 2.3 Consider N hard spheres on the spaceTd×Rd , initially distrib-
uted according to f 0N defined in (2.8). Assume that ρ0 belongs to C0(Td). Then
the distribution f (1)N (ατ, x, v) remains close for the L∞-norm toρ(τ, x)Mβ(v)
where ρ(τ, x) is the solution of the linear heat equation

∂τρ − κβ.xρ = 0 in Td , ρ|τ=0 = ρ0, (2.11)

and the diffusion coefficient κβ is given by

κβ := 1
d

∫

Rd
vL−1v Mβ(v)dv,

where L is the linear Boltzmann operator (1.3) and L−1 is its pseudo-inverse
defined on (KerL)⊥ [see also (6.8)]. More precisely,

∥∥ f (1)N (ατ, x, v) − ρ(τ, x)Mβ(v)
∥∥
L∞([0,T ]×Td×Rd )

→ 0 (2.12)

in the limit N → ∞, with α = Nεd−1 going to infinity much slower
than

√
log log N.

In the same asymptotic regime, the process +(τ ) = x1(ατ ) associated
with the tagged particle converges in law towards a Brownian motion of vari-
ance κβ , initially distributed under the measure ρ0.

The Boltzmann-Grad scaling α = Nεd−1 is chosen such that the mean free
path is of order 1/α, i.e. that a particle has on average α collisions per unit
time. This explains why in (2.10), the position of the particle is not rescaled.
Indeed over a time scale ατ a particle will encounter α2τ collisions which is
the correct balance for a diffusive limit. In other words, one can think of α as
a parameter tuning the density of the background particles. The positions and
velocities are not rescaled with α and are always at the macroscopic scale.
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2.4 Generalizations

For the sake of clarity, Theorem 2.3 has been stated in the simplest framework.
We mention below several extensions which can be deduced in a straightfor-
ward way from the proof of Theorem 2.3.

Several tagged particles: The dynamics of a finite number of tagged particles
can be followed and one can show that asymptotically, they converge to inde-
pendent Brownian motions. This gives an answer to a conjecture raised by
Lebowitz and Spohn [29] on the diffusion of colored particles in a fluid.

Interaction potential: Following the arguments in [21,37], the behavior of a
tagged particle in a gas with an interaction potential can also be treated.

Initial data: The perturbation on the initial particle could depend on z1 =
(x1, v1) instead of depending only on the position x1. The comparison argu-
ment to the linear Boltzmann equation is identical, but the derivation of the
diffusive behavior in Sect. 6.1 should be modified to show the relaxation of
the velocity to a Maxwellian at the initial stage (see Remark 6.2).

By considering an initial data of the form

ρ0
α(x1) = αdζ ρ0(αζ x1

)
with ζ ≪ 1 (2.13)

the tagged particle localizes when α goes to infinity. The analysis can be
extended to this class of initial data and leads, in the macroscopic limit, to a
Brownian motion starting initially from a Dirac mass.

Scalings: We have chosen here to work with macroscopic variables (x, v),
i.e. to rescale the particle concentration of the background and to dilate the
time with a factor α. However, the diffusive limit can be obtained by many
other equivalent scalings involving the space variable. In particular, one could
have considered a domain [0, λ]d with a size λ growing and a Boltzmann-
Grad scaling (N/λd)εd−1 = 1. Rescaling space by a factor λ and time by
λ2 ≪ log log N would have led to the same diffusive limit. In fact, one only
needs the Knudsen number to be small and of the same order as the Strouhal
number [4,39].

2.5 Structure of the paper

Theorem 2.3 is a consequence of Theorem 2.2, as explained in Sect. 6. The
core of our study is therefore the proof of Theorem 2.2, which relies on a
comparison of the particle system to a limit system known as Boltzmann
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hierarchy. This hierarchy is obtained formally in Sect. 3 from the hierarchy of
equations satisfied by the marginals of fN , known as the BBGKY hierarchy
(which is introduced in Sect. 3). Section 4 is devoted to the control of the
branching process that can be associated with the hierarchies, and in particular
with the elimination of super-exponential trees; the specificity of the linear
framework is crucial in this step, as it makes it possible to compare the solution
with the invariantmeasure globally in time.The actual proof of the convergence
of the BBGKY hierarchy towards the Boltzmann hierarchy, on times diverging
with N , can be found in Sect. 5.

Some more technical estimates are postponed to Appendix A and B.

3 Formal derivation of the low density limit

Our starting point to study the low density limit is the Liouville equation (2.3)
and its projection on the first marginal

f (1)N (t, z1) :=
∫

fN (t, ZN )dz2 . . . dzN .

Since it does not satisfy a closed equation, we have to consider the whole
BBGKY hierarchy (see Paragraph 3.1). The main difference with the usual
strategy to prove convergence is that the symmetry is partially broken due to the
fact that one particle is distinguished from the others. In other words fN |t=0 is
symmetricwith respect to z2, . . . zN but not to z1, and this property is preserved
by the dynamics.

More precisely we shall see that the specific form of the initial data (see
Paragraph 3.2) implies that asymptotically we have the following closure

f (2)N (t, z1, z2)

:=
∫

fN (t, ZN )dz3 . . . dzN ∼ f (1)N (t, z1)Mβ(v2)∼ϕα(t, z1)Mβ(v1)Mβ(v2)

where ϕα satisfies the linear Boltzmann equation (1.3) with initial data ρ0.
Thus the limiting hierarchy reduces to the linear Boltzmann equation (see
Paragraph 3.3).

3.1 The series expansion

The quantities we shall consider are the marginals

f (s)N (t, Zs) :=
∫

fN (t, ZN )dzs+1 . . . dzN
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so f (1)N is exactly the distribution of the tagged particle, and f (s)N is the corre-
lation between this tagged particle and (s − 1) particles of the background.

A formal computation based on Green’s formula leads to the following
BBGKY hierarchy for s < N

(

∂t +
s∑

i=1

vi · ∇xi

)

f (s)N (t, Zs) = α
(
Cs,s+1 f

(s+1)
N

)
(t, Zs) (3.1)

on Ds
ε, with the boundary condition as in (2.4)

f (s)N (t, Zs) = f (s)N (t, Z∗
s ) on ∂Ds+

ε (i, j).

The collision term is defined by

(
Cs,s+1 f

(s+1)
N

)
(Zs) := (N − s)εd−1α−1

×
( s∑

i=1

∫

Sd−1×Rd
f (s+1)
N (. . . , xi , v∗

i , . . . , xi+εν, v∗
s+1)

×
(
(vs+1 − vi ) · ν

)

+
dνdvs+1

−
s∑

i=1

∫

Sd−1×Rd
f (s+1)
N (. . . , xi , vi , . . . , xi+εν, vs+1)

×
(
(vs+1 − vi ) · ν

)

−
dνdvs+1

)
(3.2)

where Sd−1 denotes the unit sphere in Rd . Note that the collision integral is
split into two terms according to the sign of (vi − vs+1) · ν and we used the
trace condition on ∂DN

ε to express all quantities in terms of pre-collisional
configurations.

The closure for s = N is given by the Liouville equation (2.3). Note that the
classical symmetry arguments used to establish the BBGKY hierarchy, i.e. the
evolution equations for the marginals f (s)N (t, Zs), only involve the particles
we add by collisions to the sub-system Zs under consideration. In particular,
the equation in the BBGKY hierarchy will not be modified at all since - by
convention - the tagged particle is labeled by 1 and always belongs to the
sub-system under consideration.

Given the special role played by the initial data (which is the reference to
determine the notion of pre-collisional and post-collisional configurations), it
is then natural to express solutions of the BBGKYhierarchy in terms of a series
of operators applied to the initial marginals. The starting point in Lanford’s
proof is therefore the iterated Duhamel formula
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f (s)N (t) =
N−s∑

n=0

αn
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ss(t − t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2

. . . Ss+n(tn) f
(s+n)
N (0) dtn . . . dt1,

(3.3)

where Ss denotes the group associated to free transport in Ds
ε with specular

reflection on the boundary.
To simplify notations, we define the operators Qs,s(t) = Ss(t) and for n ≥ 1

Qs,s+n(t)

:=
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ss(t−t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2. . .Ss+n(tn)dtn. . .dt1

(3.4)

so that

f (s)N (t) =
N−s∑

n=0

αnQs,s+n(t) f
(s+n)
N (0). (3.5)

Remark 3.1 It is not obvious that formula (3.5)makes sense since the transport
operator Ss+1 is defined only for almost all initial configurations, and the colli-
sion operatorCs,s+1 is defined by some integrals on manifolds of codimension
1. This fact is analyzed in [40] and in the erratum of [21]. In the following, we
will rely on the estimates on the collision operator derived in [21].

3.2 Asymptotic factorization of the initial data

The effect of the exclusion in the equilibriummeasure vanishes when ε goes to
0 and the particles become asymptotically independent in the following sense.

Proposition 3.2 Given β > 0, there is a constant C > 0 such that for any
fixed s ≥ 1, the marginal of order s

M (s)
N ,β(Zs) :=

∫
MN ,β(ZN ) dzs+1 . . . dzN (3.6)

satisfies, as N → ∞ in the scaling Nεd−1 ≡ α ≪ 1/ε,
∣∣∣
(
M (s)

N ,β − M⊗s
β

)
1Ds

ε

∣∣∣ ≤ Cs εα M⊗s
β (3.7)

where the Maxwellian distribution M⊗s
β was introduced in (2.5).
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The proof of Proposition 3.2, by now classical, is recalled in Appendix A for
the sake of completeness.

As a consequence of Proposition 3.2, the initial data is asymptotically close
to a product measure: the following result is a direct corollary of Proposition
3.2.

Proposition 3.3 For the initial data f 0N given in (2.8), define the marginal of
order s

f 0(s)N (Zs) :=
∫

f 0N (ZN ) dzs+1 . . . dzN = ρ0(x1)M
(s)
N ,β(Zs).

There is a constantC > 0 such that as N → ∞ in the scaling Nεd−1 = α ≪ 1
ε

∣∣∣
(
f 0(s)N − g0(s)

)
1Ds

ε

∣∣∣ ≤ CsεαM⊗s
β ∥ρ0∥L∞,

where g0(s) is defined by

g0(s)(Zs) := ρ0(x1)M
⊗s
β (Vs). (3.8)

3.3 The limiting hierarchy and the linear Boltzmann equation

To obtain the Boltzmann hierarchy we start with the expansion (3.5) and
compute the formal limit of the collision operator Qs,s+n when ε goes to 0.
Recalling that (N − s)εd−1α−1 ∼ 1, it is given by

Q0
s,s+n(t) :=

∫ t

0

∫ t1

0
. . .

∫ tn−1

0
S0s (t − t1)

◦C0
s,s+1S

0
s+1(t1 − t2)C0

s+1,s+2 . . . S
0
s+n(tn) dtn . . . dt1

where S0s denotes the free flow of s particles on Tds ×Rds , and C0
s,s+1 are the

limit collision operators defined by

(
C0
s,s+1g

(s+1))(Zs)

:=
s∑

i=1

∫
g(s+1)(. . . , xi , v∗

i , . . . , xi , v
∗
s+1)

(
(vs+1 − vi ) · ν

)

+
dνdvs+1

−
s∑

i=1

∫
g(s+1)(. . . , xi , vi , . . . , xi , vs+1)

(
(vs+1 − vi ) · ν

)

−
dνdvs+1.

(3.9)
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Then the iteratedDuhamel formula for theBoltzmann hierarchy takes the form

∀s ≥ 1, g(s)α (t) =
∑

n≥0

αnQ0
s,s+n(t)g

0(s+n). (3.10)

Remark 3.4 In the Boltzmann hierarchy, the collision operators are defined by
integrals on manifolds of codimension d, so we shall require that the func-
tions

(
g(s)α

)
s≥1 are continuous, which is possible since free transport preserves

continuity on Td × Rd .

Consider the initial data (3.8). Then the family (g(s)α )s≥1 defined by

g(s)α (t, Zs) := ϕα(t, z1)M
⊗s
β (Vs) (3.11)

is a solution to the Boltzmann hierarchywith initial data g0(s) since ϕα satisfies
the linear Boltzmann equation (1.3) with initial data ρ0.

We insist that the g(s)α are not defined as the marginals of some N -particle
density.

Remark 3.5 Note that the estimates established in the next section imply actu-
ally that (g(s)α )s≥1 is the unique solution to the Boltzmann hierarchy (see [21]).

Furthermore themaximumprinciple for the linearBoltzmann equation leads
to the following estimate

sup
t≥0

ϕα(t, z1) ≤ ∥ρ0∥L∞ .

In the following for the sake of simplicity we write gα := g(1)α .

4 Control of the branching process

The restriction on the time of validity T ∗/α of Lanford’s convergence proof
(determined by a weighted norm of the initial data) is based on the elimination
of “pathological” collision trees, defined by a too large number of branches
created in the time interval [0, T ∗/α] (typically greater than nε = O(| log ε|),
see [21] for a quantitative estimate of the truncation parameter). Here the
global bound coming from the maximum principle will enable us to iterate
this truncation process on any time interval.

4.1 A priori estimates coming from the maximum principle

For initial data as (2.8), uniform a priori bounds can be obtained using only
the maximum principle for the Liouville equation (2.3).
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Proposition 4.1 For any fixed N, denote by fN the solution to the Liouville
equation (2.3) with initial data (2.8), and by f (s)N its marginal of order s

f (s)N (t, Zs) :=
∫

fN (t, ZN ) dzs+1 . . . dzN . (4.1)

Then, for any s ≥ 1, the following bounds hold uniformly with respect to time

sup
t

f (s)N (t, Zs) ≤ M (s)
N ,β(Zs)∥ρ0∥L∞ ≤ CsM⊗s

β (Vs)∥ρ0∥L∞, (4.2)

for some C > 0, provided that αε ≪ 1.

Note here that although the variable z1 does not play at all a symmetric role
with respect to z2, . . . zN , the upper bound (4.2) does not see this asymmetry.

Proof One has immediately from (2.8) that

f 0N (ZN ) = MN ,β(ZN )ρ
0(x1) ≤ MN ,β(ZN )∥ρ0∥L∞ .

Since the maximum principle holds for the Liouville equation (2.3), and as the
Gibbs measure MN ,β is a stationary solution, we get for all t ≥ 0

fN (t, ZN ) ≤ MN ,β(ZN )∥ρ0∥L∞ .

The inequalities for the marginals follow by integration and Proposition 3.2.
⊓9

4.2 Continuity estimates for the collision operators

To get uniform estimates with respect to N , the usual strategy is to use some
Cauchy-Kowalewski argument. In the following we shall denote by |Q|s,s+n
the operator obtained by summing the absolute values of all elementary con-
tributions

|Q|s,s+n(t) :=
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ss(t − t1) |Cs,s+1| Ss+1(t1 − t2)

◦|Cs+1,s+2| . . . Ss+n(tn) dtn . . . dt1

and similarly for |Q0|s,s+n

|Q0|s,s+n(t) :=
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
S0s (t − t1) |C0

s,s+1| S0s+1(t1 − t2)

◦|C0
s+1,s+2| . . .S0s+n(tn) dtn . . . dt1
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where
(
|Cs,s+1| f (s+1)

N

)
(Zs)

:= (N − s)εd−1α−1
s∑

i=1

∫

Sd−1×Rd
f (s+1)
N (. . . , xi , v∗

i , . . . , xi + εν, v∗
s+1)

×
(
(vs+1 − vi ) · ν

)

+
dνdvs+1

+(N − s)εd−1α−1
s∑

i=1

∫

Sd−1×Rd
f (s+1)
N (. . . , xi , vi , . . . , xi + εν, vs+1)

×
(
(vs+1 − vi ) · ν

)

−
dνdvs+1

and

(
|C0

s,s+1|g(s+1))(Zs) :=
s∑

i=1

∫
g(s+1)(. . . , xi , v∗

i , . . . , xi , v
∗
s+1)

×
(
(vs+1 − vi ) · ν

)

+
dνdvs+1

+
s∑

i=1

∫
g(s+1)(. . . , xi , vi , . . . , xi , vs+1)

×
(
(vs+1 − vi ) · ν

)

−
dνdvs+1.

For λ > 0 and k ∈ N∗, we define Xε,k,λ the space of measurable functions fk
defined almost everywhere on Dk

ε such that

∥ fk∥ε,k,λ := supessZk∈Dk
ε

∣∣∣ fk(Zk) exp
(
λHk(Zk)

)∣∣∣ < ∞,

and similarly X0,k,λ is the space of continuous functions gk defined on Tdk ×
Rdk such that

∥gk∥0,k,λ := sup
Zk∈Tdk×Rdk

∣∣∣gk(Zk) exp
(
λHk(Zk)

)∣∣∣ < ∞.

Lemma 4.2 There is a constant Cd depending only on d such that for all
s, n ∈ N∗ and all t ≥ 0, the operators |Q|s,s+n(t) and |Q0|s,s+n(t) satisfy
the following continuity estimates: for all fs+n in Xε,s+n,λ, |Q|s,s+n(t) fs+n
belongs to Xε,s, λ

2
and

∥∥∥|Q|s,s+n(t) fs+n

∥∥∥
ε,s, λ

2

≤ es−1
(
Cdt

λ
d+1
2

)n

∥ fs+n∥ε,s+n,λ. (4.3)
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Similarly for all gs+n in X0,s+n,λ, |Q0|s,s+n(t)gs+n belongs to X0,s, λ
2
and

∥∥∥|Q0|s,s+n(t)gs+n

∥∥∥
0,s, λ

2

≤ es−1
(
Cdt

λ
d+1
2

)n

∥gs+n∥0,s+n,λ. (4.4)

Proof Estimate (4.3) is simply obtained from the fact that the transport opera-
tors preserve the weighted norms, along with the continuity of the elementary
collision operators. From the erratum of [21], we get the following statements

• The transport operators satisfy the identities

∥Sk(t) fk∥ε,k,λ = ∥ fk∥ε,k,λ

∥S0k(t)gk∥0,k,λ = ∥gk∥0,k,λ.

• The collision operators satisfy the following bounds in theBoltzmann-Grad
scaling Nεd−1 ≡ α

∣∣∣Sk(−t) |Ck,k+1|Sk+1(t) fk+1(Zk)
∣∣∣ ≤ Cd λ− d

2

⎛

⎝kλ− 1
2 +

∑

1≤i≤k

|vi |

⎞

⎠

× exp (−λHk(Zk)) ∥ fk+1∥ε,k+1,λ

almost everywhere on Rt × Dk
ε , for some Cd > 0 depending only on d,

and

∣∣|C0
k,k+1| gk+1(Zk)

∣∣ ≤ Cd λ− d
2

⎛

⎝kλ− 1
2 +

∑

1≤i≤k

|vi |

⎞

⎠

× exp (−λHk(Zk)) ∥gk+1∥0,k+1,λ, (4.5)

on Tdk × Rdk .

The result then follows from piling together those inequalities (distributing the
exponential weight evenly on each occurence of a collision term). We notice
that by the Cauchy-Schwarz inequality,

∑

1≤i≤k

|vi | exp

⎛

⎝− λ

4n

∑

1≤ j≤k

|v j |2
⎞

⎠

≤
(
k
2n
λ

) 1
2

⎛

⎝
∑

1≤i≤k

λ

2n
|vi |2 exp

⎛

⎝− λ

2n

∑

1≤ j≤k

|v j |2
⎞

⎠

⎞

⎠
1/2

≤
(2nk
eλ

)1/2
≤
√

2
eλ

(s + n),
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with k ≤ s + n in the last inequality. Each collision operator gives therefore
a loss of Cλ−(d+1)/2(s + n) together with a loss on the exponential weight,
while the integration with respect to time provides a factor tn/n!. By Stirling’s
formula, we have

(s + n)n

n! ≤ exp
(
n log

n + s
n

+ n
)

≤ exp(s + n).

That proves the first statement in the lemma. The same arguments give the
counterpart for the Boltzmann collision operator. ⊓9

4.3 Collision trees of controlled size

For general initial data (in particular, for chaotic initial data), the proof of
Lanford’s convergence result then relies on two steps:

(i) A short timebound for the series expansion (3.5) expressing the correlations
of the system of N particles and a similar bound for the corresponding
quantities associated with the Boltzmann hierarchy;

(ii) The termwise convergence of each term of the series.

However after a short time (depending on the initial data), the question of the
convergence of the series (3.5) is still open. One of the difficulties to prove
this convergence is to take into account the cancellations between the gain
and loss terms of the collision operators. These cancellations are neglected in
Lanford’s strategy.

Here we assume that the BBGKY initial data takes the form (2.8) and the
Boltzmann initial data takes the form (3.8), and we shall take advantage of
the control by stationary solutions (the existence of which is obviously related
to these cancellations) given by Proposition 4.1 to obtain a lifespan which
does not depend on the initial data. Indeed, we have thanks to Propositions 3.2
and 4.1 provided that αε ≪ 1

∥ f (k)N (t)∥ε,k,β = supessZk∈Dk
ε

∣∣∣ f (k)N (t, Zk) exp
(
βHk(Zk)

)∣∣∣

≤ sup
Zk∈Dk

ε

(
M (k)

N ,β(Zk) exp
(
βHk(Zk)

))
∥ρ0∥L∞

≤ Ck sup
Zk∈Dk

ε

(
M⊗k

β (Vk) exp
(
βHk(Zk)

))
∥ρ0∥L∞ .

Thus for all t ∈ R,

∥ f (k)N (t)∥ε,k,β ≤ Ck
( β

2π

)kd/2
∥ρ0∥L∞ . (4.6)
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Similarly for the initial data for the Boltzmann hierarchy defined in (3.8), by
Remark 3.5 the solution (3.11) of the evolution is bounded by

∥g(k)α (t)∥0,k,β ≤
( β

2π

)kd/2
∥ρ0∥L∞ . (4.7)

Moreover we shall use a truncated series expansion instead of (3.5) and (3.10).
Let us fix a (small) parameter h > 0 and a sequence {nk}k≥1 of integers to be
tuned later. We shall study the dynamics up to time t := Kh for some large
integer K , by splitting the time interval [0, t] into K intervals, and controlling
the number of collisions on each interval. In order to discard trajectories with
a large number of collisions in the iterated Duhamel formula (3.5), we define
collision trees “of controled size” by the condition that they have strictly less
than nk branch points on the interval [t − kh, t − (k − 1)h]. Note that by
construction, the trees are actually followed “backwards”, from time t (large)
to time 0.

As we are interested only in the asymptotic behaviour of the first marginal,
we start by using (3.3) with s = 1, during the time interval [t − h, t]: iterating
Duhamel’s formula up to time t − h instead of time 0, we have

f (1)N (t) =
n1−1∑

j1=0

α j1−1Q1,1+ j1(h) f
( j1)
N (t − h)+ R1,n1(t − h, t), (4.8)

where R1,n1 accounts for at least n1 collisions

R1,n1(t
′, t) :=

N−1∑

p=n1

α pQ1,p+1(t − t ′) f (p+1)
N (t ′).

More generally we define Rk,n as follows

Rk,n(t ′, t) :=
N−k∑

p=n

α pQk,k+p(t − t ′) f (k+p)
N (t ′).

The term Rk,n(t ′, t) accounts for trajectories originating at k points at time t ,
and involving at least n collisions during the time-span t − t ′. The idea is that
if n is large then such a behaviour should be atypical and Rk,n(t ′, t) should be
negligible.

The first term on the right-hand side of (4.8) can be broken up again by
iterating theDuhamel formula on the time interval [t−2h, t−h] and truncating
the contributions with more than n2 collisions: this gives
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t

h

Fig. 2 Suppose nk = Ak with A = 2. Each collision is represented by a circle from which 2
trajectories emerge. The tree including the three extra collisions in dotted lines occurring during
[t − 2h, t − h] is not a good collision tree and in our procedure, it would be truncated at time
t − 2h. The tree without the dotted lines is a good collision tree with t = 4h: the number of
collisions during the kth-time interval is less than nk − 1 = Ak − 1

f (1)N (t) =
n1−1∑

j1=0

n2−1∑

j2=0

α j1+ j2Q1,1+ j1(h)Q1+ j1,1+ j1+ j2(h) f (1+ j1+ j2)
N (t − 2h)

+ R1,n1(t − h, t)+
n1−1∑

j1=0

α j1Q1, j1+1(h)R j1+1,n2(t − 2h, t − h).

Iterating this procedure K times and truncating the trajectories with at least nk
collisions during the time interval [t −kh, t − (k−1)h], leads to the following
expansion (Fig. 2)

f (1)N (t) = f (1,K )
N (t)+ RK

N (t), (4.9)

where denoting J0 := 1 and Jk := 1+ j1 + · · · + jk ,

f (1,K )
N (t) :=

n1−1∑

j1=0

. . .

nK−1∑

jK=0

α JK−1Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h) f 0(JK )N

(4.10)

and

RK
N (t) :=

K∑

k=1

n1−1∑

j1=0

. . .

nk−1−1∑

jk−1=0

α Jk−1−1Q1,J1(h) . . . QJk−2,Jk−1(h)

◦RJk−1,nk (t − kh, t − (k − 1)h).
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By an appropriate choice of the sequence {nk}, we are going to show that the
main contribution to the density f (1)N (t) is given by f (1,K )

N (t) and that RK
N (t)

vanishes asymptotically.
Next as in (4.10) we can write a truncated expansion for gα [see (3.11)] as

follows:

gα(t) = g(1,K )
α (t)+ R0,K

α (t), (4.11)

where with notation (3.8) and (3.11),

g(1,K )
α (t) :=

n1−1∑

j1=0

. . .

nK−1∑

jK=0

α JK−1Q0
1,J1(h)Q

0
J1,J2(h) . . . Q

0
JK−1,JK (h) g

0(JK )
α

(4.12)

and

R0,K
α (t) :=

K∑

k=1

n1−1∑

j1=0

. . .

nk−1−1∑

jk−1=0

α Jk−1−1Q0
1,J1(h) . . . Q

0
Jk−2,Jk−1

(h)

◦R0
Jk−1,nk (t − kh, t − (k − 1)h)

with

R0
k,n(t

′, t) :=
∑

p≥n

α pQ0
k,k+p(t − t ′)g(k+p)

α (t ′).

4.4 Estimates of the remainders

Since we expect the particles to undergo on average one collision per unit of
time, the growth of collision trees is typically exponential. Pathological trees
are therefore those with super exponential growth. There are two natural ways
of defining such pathological trees
• Either by choosing some fixed h (given for instance by Lanford’s proof)
and log nk ≫ k;

• Or by fixing nk = Ak and letting the elementary time interval h → 0.
We shall choose the latter option.

Proposition 4.3 Under the assumptions of Theorem 2.2, the following holds.
Let A ≥ 2 be given and define nk := Ak, for k≥1. Then there exist c,C, γ0 > 0
depending on d, A and β such that for any t > 1 and any γ ≤ γ0, choosing

h ≤ cγ
αA/(A−1)t1/(A−1) and K = t/h integer (4.13)
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we get

∥∥∥RK
N (t)

∥∥∥
L∞(Td×Rd )

+
∥∥∥R0,K

α (t)
∥∥∥
L∞(Td×Rd )

≤ Cγ A∥ρ0∥L∞ . (4.14)

Proof We are going to bound

∥∥Q1,J1(h) . . . QJk−2,Jk−1(h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

for each term in the remainder RK
N . The exact distribution of collisions in the

last k − 1 intervals is not needed and it is enough to estimate directly

∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

.

Applying Lemma 4.2, one has (denoting generically by Cd any constant
depending only on d)

∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

≤
(
Cd (k − 1)h

β(d+1)/2

)Jk−1−1

∥RJk−1,nk (t − kh, t − (k − 1)h)∥ε,Jk−1,β/2.

Then arguing as in the proof of Lemma 4.2, one can write

α Jk−1−1∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

≤
N−Jk−1∑

p=nk

(
Cdα(k − 1)h

β(d+1)/2

)Jk−1−1( Cdαh
β(d+1)/2

)p

sup
t≥0

∥ f (Jk−1+p)
N (t)∥ε,Jk−1+p,β

≤ ∥ρ0∥L∞β
d
2 (αt)Jk−1−1

N−Jk−1∑

p=nk

(
Cd√

β

)Jk−1+p−1

(αh)p,

thanks to (4.6) and recalling that (k − 1)h ≤ t . Assuming from now on that

Cdαh√
β

<
1
2

(4.15)

we find

α Jk−1−1∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

≤ ∥ρ0∥L∞β
d
2 (αt)Jk−1−1

(
Cd√

β

)Jk−1+nk−1

(αh)nk . (4.16)
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Note that N j := 1 + n1 + · · · + n j = A j+1−1
A−1 ≤ 1

A−1n j+1. Then, since
Jk−1 ≤ Nk−1, one has, for some appropriate constant C(d,β),

α Jk−1−1∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

≤ βd/2 exp
(
Ak
(
logC(d,β)+ 1

A − 1
log(αt)+ log(αh)

))
∥ρ0∥L∞ .

Therefore, choosing

h ≤ γ

C(d,β) αA/(A−1)t1/(A−1) ,

which is compatible with (4.15) as soon as γ is small enough one has

α Jk−1−1∥∥|Q|1,Jk−1((k − 1)h) RJk−1,nk (t − kh, t − (k − 1)h)
∥∥
L∞(Td×Rd )

≤ βd/2 exp
(
Ak log γ

)
∥ρ0∥L∞ . (4.17)

This implies

∥∥∥RK
N

∥∥∥
L∞(Td×Rd )

≤ βd/2
K∑

k=1

(
k∏

i=1

ni

)

exp
(
Ak log γ

)
∥ρ0∥L∞

≤ βd/2
K∑

k=1

exp
(
k(k + 1) log(A)+ Ak log γ

)
∥ρ0∥L∞

≤CAβd/2
K∑

k=1

exp
(
Ak log γ

)
∥ρ0∥L∞ ≤CAβd/2γ A∥ρ0∥L∞

for γ sufficiently small, where CA is a constant depending on A. Thus, we get
the first part of (4.14)

∥RK
N ∥L∞(Td×Rd ) ≤ Cγ A∥ρ0∥L∞ .

The argument is identical in the case of the Boltzmann hierarchy:

α Jk−1−1
∥∥∥|Q|01,Jk−1

((k − 1)h) R0
Jk−1,nk (t − kh, t − (k − 1)h)

∥∥∥
L∞(Td×Rd )

≤
(
Cd(k − 1)αh

β(d+1)/2

)Jk−1−1 ( Cdαh
β(d+1)/2

)nk
sup
t≥0

∥g(Jk−1+nk)
α (t)∥0,Jk−1+nk ,β

≤ β
d
2

(
Cd√

β

)Jk−1+nk−1

(αt)Jk−1−1 (αh)nk∥ρ0∥L∞,
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hence finally

∥∥∥R0,K
α

∥∥∥
L∞(Td×Rd )

≤ CAβd/2γ A∥ρ0∥L∞,

and the proposition is proved. ⊓9

5 Proof of the convergence

In this section, we conclude the proof of Theorem 2.2. Thanks to Proposi-
tion 4.3,we are reduced to studying f (1,K )

N −g(1,K )
α [introduced in (4.9), (4.11)]

and to proving that the matching terms in the series f (1,K )
N and g(1,K )

α are close
to each other.

Throughout this section, the parameters are chosen such that (with the nota-
tion of Proposition 4.3)

Nεd−1 = α ≪ 1
ε
, A ≥ 2, t > 1, K = t

h
. (5.1)

Each elementary term in the series f (1,K )
N and g(1,K )

α has a geometric interpre-
tation as an integral over somepseudo-trajectories. As explained in [13,21,28],
in this formulation the characteristics associatedwith the operatorsSi(ti−1−ti )
and S0i (ti−1 − ti ) are followed backwards in time between two consecutive
times ti and ti−1, and the collision terms (associated with Ci,i+1 and C0

i,i+1)
are seen as source terms in which “additional particles” are “adjoined” to
the system. The main heuristic idea is that the pseudo-trajectories associated
to both hierarchies can be coupled precisely if no recollisions occur in the
BBGKY hierarchy. The core of the proof will be to obtain an upper bound on
the occurrence of recollisions and to show that their contribution is negligible.

In order to prevent recollisions in the time interval [ti+1, ti ], some bad sets
in phase space must be removed. Following the approach developed in [21],
a geometrical control of the trajectories in the torus (stated in Lemma 5.2)
enables us to define bad sets, outside of which the flow S between two collision
times is the free flow S0 (see Proposition 5.1). Finally, the geometric controls
are used in Sect. 5.3 to obtain quantitative estimates on the collision integrals
where those bad sets have been removed.

5.1 Reformulation in terms of pseudo-trajectories

We consider one term of the sum f (1,K )
N (t) in (4.10) and show how

it can be interpreted in terms of pseudo-trajectories. Given the indices
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J = ( j1, . . . , jK ), we set

F (1,K )
N (J ) (t, z1)

:= Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h) f 0(JK )N

=
∫

TJ (h)
dT S1(t − t1)C1,2S2(t1 − t2)C2,3 . . .SJK (tJK−1) f

0(JK )
N (5.2)

where the time integral is over the collision times T = (t1, . . . , tJK−1) taking
values in

TJ (h) :=
{
T = (t1, . . . , tJK−1)

∣∣∣

ti < ti−1 and (tJk , . . . , tJk−1+1) ∈ [t − kh, t − (k − 1)h]
}
. (5.3)

In the following we denote by !s the s-particle flow. Given z1 = (x1, v1) ∈
Td × Rd and a time u ∈ [t1, t], we call z1(u) = !1(u)z1 the coordinates
following the backward flow !1 of one particle. The first collision operator
C1,2 is interpreted as the adjunction at time t1 of a new particle at x1(t1)+ εν2
for a deflection angle ν2 ∈ Sd−1 and with a velocity v2 ∈ Rd . The new pair
of particles Z2 will be evolving according to the backward 2-particle flow !2
during the time interval [t2, t1] starting at t1 from
{
Z2(t1)=

(
(x1(t1), v1), (x1(t1)+ εν2, v2)

)
in the pre-collisional case (v2 − v1) · ν2 < 0

Z2(t1)=
(
(x1(t1), v∗

1), (x1(t1)+ εν2, v
∗
2)
)
in the post-collisional case (v2 − v1) · ν2 > 0,

(5.4)

the latter case corresponding to the scattering.
Iterating this procedure, a branching process is built inductively by adding

a particle labelled i + 1 at time ti to the particle zmi (ti ) where mi ≤ i is
chosen randomly among the first i particles. Given a deflection angle νi+1 and
a velocity vi+1, the velocity of the particles zmi and zi+1 at time ti are updated
according to the pre-collisional or post-collisional rule as in (5.4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zi+1(ti ) =
(
{z j (ti )} j ̸=mi , (xmi (ti ), vmi (ti )), (xmi (ti )+ ενi+1, vi+1)

)

in the pre-collisional case(vi+1(ti ) − vmi ) · νi+1 < 0
Zi+1(ti ) =

(
{z j (ti )} j ̸=mi , (xmi (ti ), v

∗
mi
(ti )), (xmi (ti )+ ενi+1, v

∗
i+1)

)

in the post-collisional case (vi+1(ti ) − vmi ) · νi+1 > 0.

Let Zi+1 denote the i + 1 components after the i th-collision. The evolution
of Zi+1 follows the flow of the backward transport ! i+1 during the time
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Fig. 3 A collision tree is
represented with 3 collisions.
The velocities (v1, v2) at
time t1 are pre-collisional
and the first particle keeps its
velocity v1 after the
collision. At time t3, the first
particle is selected m3 = 1
and the velocity v1 is
modified into v∗

1 according
to the post-collisional rule

tt1t2t3t4 = 0

z1

x1(t1)

x1(0)

x3(0)

x2(0)

x2(t2)

x4(0)

interval [ti+1, ti ]. From [40] (see also Remark 3.1), one can check that! i+1 is
well defined up to a set of measure 0. In the following, we shall use the name
collision to describe the creation of a particle and recollision if two particles
collide in the flow ! i+1.

To summarize, pseudo-trajectories do not involve physical particles. They
are a geometric interpretation of the iterated Duhamel formula in terms of a
branching process flowing backward in time (Fig. 3) and determined by

• The collision times T = (t1, . . . , tJK−1)which are interpreted as branching
times

• The labels of the collision particles m = (m1, . . . ,mJK−1) from which
branching occurs and which take values in the set

MJ :=
{
m = (m1, . . . ,mJK−1), 1 ≤ mi ≤ i

}

• The coordinates of the initial particle z1 at time t
• The velocities v2, . . . , vJK inRd and deflection angles ν2, . . . , νJK in Sd−1

1
for each additional particle.

The integral (5.2) can be evaluated by integrating f 0(JK )N on the value of the
pseudo-trajectories Z JK (0) at time 0

F (1,K )
N (J ) =

∑

m∈MJ

(
εd−1

α

)JK−1
(N − 1)!
(N − JK )!

F (1,K )
N (J,m)

where

F (1,K )
N (J,m) (t, z1) :=

∫

TJ (h)
dT
∫

(Sd−1×Rd )JK −1
d ν̄ dV̄

A(T, z1, ν̄, V̄ ) f 0(JK )N (Z JK (0)) (5.5)
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and with

A(T, z1, ν̄, V̄ ) :=
JK−1∏

i=1

((vi+1−vmi (ti )) · νi+1) and

{
ν̄={ν2, . . . , νJK }
V̄ ={v2, . . . , vJK }

.

(5.6)

The definition of A requires to compute the whole pseudo-trajectory on the
time interval [0, t] starting at z1 in order to be able to sample the velocities
at the different times T = (t1, . . . , tJK−1). Note that the contributions of the
gain and loss terms in the collision operator Ck,k+1 are taken into account by
the sign of

(
(vk+1 − vmk (tk)) · νk+1

)
.

In the same way, a branching process associated with the Boltzmann hier-
archy can be constructed: given an initial particle z01 = (x01 , v

0
1) at time t , a

collection of collision times T = (t1, . . . , tJK−1) and labels of the collision
particles m = (m1, . . . ,mJK−1) ∈ MJ as well as a collection of veloci-
ties v2, . . . , vJK and deflection angles ν2, . . . , νJK , the (k + 1)th particle z0k+1
is added at time tk at the position x0mk

(tk) of the particlemk and their velocities
are adjusted according to the type of the collision

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z0mk
(tk) =

(
x0mk

(tk), vmk (tk)
)
, z0k+1(tk) =

(
x0mk

(tk), vk+1
)

if (vk+1 − vmk (tk)) · νk+1 < 0
z0mk

(tk) =
(
x0mk

(t+k ), v∗
mk
(t+k )

)
, z0k+1(tk) =

(
x0mk

(t+k ), v∗
k+1

)

if (vk+1 − vmk (t
+
k )) · νk+1 > 0.

Then, the correspondingpseudo-trajectory Z0
k+1 evolves according to the back-

ward free flow denoted by !0
k+1 during the time interval [tk+1, tk] until the

next particle creation. As the particles are points, no recollision occurs in this
branching process. Notice that u +→ Z0

k+1(u) is pointwise left-continuous
on [0, tk].

The counterpart of the integral (5.2) in the series g(1,K )
α (t) in (4.12) can be

formally rewritten as follows

G(1,K )(J ) (t, z1) =
∫

TJ (h)
dT S01(t − t1)C0

1,2S
0
2(t1 − t2)C0

2,3 . . . S
0
JK (tJK−1)g0(JK )

=
∑

m∈MJ

G(1,K )(J,m) (5.7)

where the integral is over the pseudo-trajectories

G(1,K )(J,m) (t, z1)

:=
∫

TJ (h)
dT
∫

(Sd−1×Rd )JK −1
d ν̄ dV̄ Â(T, z1, ν̄, V̄ ) g0(JK )(Z0

JK (0)), (5.8)
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t
t1

v1

(ν2, v2)

t2

ε

Fig. 4 The first stages of both pseudo-trajectories are depicted up to the occurence of a
recollision. The BBGKY pseudo-trajectories are represented with plain arrows, whereas the
Boltzmann pseudo-trajectories correspond to the dashed arrows. At time t , the particle with
label 1 in the BBGKY hierarchy is a ball of radius ε centered at position x1 and the particle
in the Boltzmann hierarchy is depicted as a point located at x01 = x1. At time t1 the second
particle is added and at time t2 the third. Both hierarchies are coupled, but a small error in the
particle positions of order ε can occur at each collision. In this figure, a recollision between the
first and the second particle of the BBGKY pseudo-trajectories occurs and after this recollision
the Boltzmann and the BBGKY pseudo-trajectories are no longer close to each other. Indeed
the BBGKY trajectories are deflected after the recollision, instead the ideal particles do not
collide and follow a straight line (see the dashed arrows). Note that before the recollisions the
trajectories of z1 and z01 are identical and therefore the plain and the dashed arrows overlap

with Â defined as in (5.6) but with respect to the Boltzmann hierarchy pseudo-
trajectories.

To show that F (1,K )
N (J,m) andG(1,K )(J,m) are close to each other when N

diverges, we shall prove that the pseudo-trajectories Z and Z0 can be coupled
in order to remain very close to each other up to a small error (see Fig. 4)

• Due to the micro-translations ενk+1 of the added particle at each collision
time tk

• Excluding the possible recollisions on the interval ]tk, tk−1[ along the flow
Sk , which do not occur for the free flow S0k .

The proof of the convergence follows the arguments of [21]. This will be
achieved by constructing in (5.18), a set of deflection angles and veloci-
ties (B(J, T,m))c ⊂

(
Sd−1 × Rd)Jk−1 such that the pseudo-trajectories Z

induced by this set have no recollisions and therefore remain very close
to the pseudo-trajectories Z0 associated to the free flow. Furthermore, the
measure of B(J, T,m) tends to 0 when N goes to infinity. Finally, in Sect.
5.3, all the estimates will be combined to derive a quantitative bound on
F (1,K )
N (J,m) − G(1,K )(J,m).

123

Author's personal copy



524 T. Bodineau et al.

5.2 Reduction to non-pathological trajectories

5.2.1 The elementary step

The set of good configurations with k particles will be such that the particles
remain at a distance ε0 ≫ ε for a time t , i.e. that they belong to the set

Gk(ε0) :=
{
Zk ∈ Tdk × Rdk

∣∣∣ ∀u ∈ [0, t], ∀i ̸= j,

d(xi − u vi , x j − u v j ) ≥ ε0

}

where d denotes the distance on the torus Td . For particles in Gk(ε0), the
transport !k coincides with the free flow. Fix ā ≪ ε0. Thus, if at time t the
configurations Zk , Z0

k are such that

∀i ≤ k, |xi − x0i | ≤ ā, vi = v0i (5.9)

and that Z0
k belongs to Gk(ε0), then the configurations!k(u)Zk ,!0

k(u)Z
0
k will

remain at distance less than ā for u ∈ [0, t].
We are going to show that the good configurations are stable by adjunction

of a (k + 1)th-particle next to the particle labelled by mk ≤ k. More precisely,
let Z0

k = (X0
k , Vk) be in Gk(ε0) and Zk = (Xk, Vk) with positions close to

X0
k and same velocities [cf. (5.9)]. Then, by choosing the velocity vk+1 and

the deflection angle νk+1 of the new particle k + 1 outside a bad set Bmk
k (Z0

k ),
both configurations Zk and Z0

k will remain close to each other. Of course,
immediately after the adjunction, the particles mk and k + 1 will not be at
distance ε0, but vk+1, νk+1 will be chosen such that the particles drift rapidly
far apart and after a short time δ > 0 the configurations Zk+1 and Z0

k+1 will
be again in the good sets Gk+1(ε0/2) and Gk+1(ε0).

This stability result was obtained in [21] and is stated below.We shall restrict
to bounded velocities taking values in the ball BE :=

{
v ∈ Rd , |v| ≤ E

}
for

a given large parameter E > 0 to be tuned later on.

Proposition 5.1 ([21]) We fix parameters ā, ε0, δ such that

AK+1ε ≪ ā ≪ ε0 ≪ min(δE, 1). (5.10)

Given Z0
k = (X0

k , Vk) ∈ Gk(ε0) and mk ≤ k, there is a subset Bmk
k (Z0

k )

of Sd−1 × BE of small measure

∣∣Bmk
k (Z0

k )
∣∣ ≤ Ck

(

Ed
(
ā
ε0

)d−1

+ Ed(Et)dεd−1
0 + E

(ε0

δ

)d−1
)

(5.11)
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such that good configurations close to Z0
k are stable by adjunction of a colli-

sional particle close to the particle x0mk
in the following sense.

Let Zk = (Xk, Vk) be a configuration of k particles satisfying (5.9), i.e.
|Xk − X0

k | ≤ ā. Given (νk+1, vk+1) ∈ (Sd−1 × BE )\Bmk
k (Z0

k ), a new particle
with velocity vk+1 is added at xmk + ενk+1 to Zk and at x0mk

to Z0
k . Two

possibilities may arise

• For a pre-collisional configuration νk+1 · (vk+1 − vmk ) < 0 then

∀u ∈]0, t],
{∀i ̸= j ∈ [1, k], d(xi − u vi , x j − u v j ) > ε,

∀ j ∈ [1, k], d(xmk + ενk+1 − u vk+1, x j − u v j ) > ε.

(5.12)

Moreover after the time δ, the k + 1 particles are in a good configuration

∀u∈ [δ, t],
{
(Xk − uVk, Vk, xmk + ενk+1 − u vk+1, vk+1)∈Gk+1(ε0/2)

(X0
k − uVk, Vk, x0mk

− u vk+1, vk+1) ∈ Gk+1(ε0).

(5.13)

• For a post-collisional configuration νk+1 · (vk+1 − vmk ) > 0 then the
velocities are updated

∀u ∈]0, t],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀i ̸= j ∈ [1, k]\{mk}, d(xi − u vi , x j − u v j ) > ε,

∀ j ∈ [1, k]\{mk}, d(xmk+ενk+1−u v∗
k+1, x j−u v j )>ε,

∀ j ∈ [1, k]\{mk}, d(xmk − u v∗
mk
, x j − u v j ) > ε,

d(xmk − u v∗
mk
, xmk + ενk+1 − u v∗

k+1) > ε.

(5.14)

Moreover after the time δ, the k + 1 particles are in a good configuration

∀u ∈ [δ, t],
⎧
⎪⎨

⎪⎩

(
{x j − u v j , v j } j ̸=mk , xmk − u v∗

mk
, v∗

mk
, xmk + ενk+1 − u v∗

k+1, v
∗
k+1
)

∈ Gk+1(ε0/2),
(
{x0j − u v j , v j } j ̸=mk , x

0
mk

− u v∗
mk
, v∗

mk
, x0mk

− u v∗
k+1, v

∗
k+1
)

∈ Gk+1(ε0).

(5.15)

Proposition 5.1 is the elementary step for adding a new particle. In Sect. 5.2.2,
we are going to show how this step can be iterated in order to build inductively
good pseudo-trajectories Z and Z0. Note that after adding a new particle,
the velocities remain identical at each time in both configurations, but their
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positions differ due the exclusion condition in the BBGKY hierarchy which
induces a shift of ε at each creation of a new particle (see Fig. 4).

We refer to [21] for a complete proof of Proposition 5.1 and simply recall
that it can be obtained from the following control on free trajectories.

Lemma 5.2 Given t>0, and ā>0 satisfying AK+1ε≪ ā≪ε0 ≪min(δE, 1),
consider two points x01 , x

0
2 in T

d such that d(x01 , x
0
2) ≥ ε0, and a velocity v1 ∈

BE. Then there exists a subset K (x01 − x02 , ε0, ā) ofR
d with measure bounded

by

|K (x01 − x02 , ε0, ā)| ≤ CEd

((
ā
ε0

)d−1

+ (Et)d ād−1

)

and a subset Kδ(x01 − x02 , ε0, ā) of R
d , the measure of which satisfies

|Kδ(x01 − x02 , ε0, ā)| ≤ CE
((ε0

δ

)d−1
+ (Et)d Ed−1εd−1

0

)

such that for any v2 ∈ BE and x1, x2 such that |x1 − x01 | ≤ ā, |x2 − x02 | ≤ ā,
the following results hold:

• If v1 − v2 /∈ K (x01 − x02 , ε0, ā), then

∀u ∈ [0, t], d(x1 − u v1, x2 − u v2) > ε

• If v1 − v2 /∈ Kδ(x01 − x02 , ε0, ā)

∀u ∈ [δ, t], d(x1 − u v1, x2 − u v2) > ε0.

The proof of this lemma is a simple adaptation of Lemma 12.2.1 in [21], and is
given in Appendix B. Note that this is the only point of the convergence proof
which differs in the case of the torus Td from the case of the whole space Rd .
In the case of the torus, there are indeed no longer dispersion properties so
waiting for a sufficiently long time, we expect trajectories to go back ε-close
to their initial positions.

5.2.2 Induction procedure for the pseudo-trajectories

Using the elementary step of Sect. 5.2.1, we are going to construct in Proposi-
tion 5.3 a coupling between the BBGKY and Boltzmann pseudo-trajectories,
defined in Sect. 5.1, such that both trajectories remain close for all times up to
a small error. In particular, this proof shows that recollisions may occur for the
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BBGKY pseudo-trajectories only for a set of configurations at time 0 in DJK
ε

with small measure.
As the stability of the good configurations (proved in Proposition 5.1)

requires a delay δ > 0 in between 2 collisions, we introduce a modified set of
collision times

TJ,δ(h) :=
{
T = (t1, . . . , tJK−1) / ti < ti−1 − δ,

(tJk , . . . , tJk−1+1) ∈ [t − kh, t − (k − 1)h]
}
. (5.16)

The following statement is analogous to Lemma 14.1.1 of [21].

Proposition 5.3 Fix J = ( j1, . . . , jK ), m = (m1, . . . ,mJK−1) ∈ MJ and
T ∈ TJ,δ(h). Let the pseudo-trajectories Zi = (Xi , Vi ), Z0

i = (X0
i , Vi ) be

defined inductively by choosing at each collision time ti a deflection angle νi+1
and a velocity vi+1 such that

(νi+1, vi+1) ∈
(
Sd−1 × BE

)
\Bmi

i (Z0
i (ti )) and

i+1∑

k=1

v2k < E2.

The velocities of both pseudo-trajectories coincide as well as the positions
x1(u) = x01(u) for u ∈ [0, t]. Furthermore, for ε sufficiently small

∀i ≤ JK − 1, ∀ℓ ≤ i + 1, |xℓ(ti+1) − x0ℓ (ti+1)| ≤ εi. (5.17)

As a consequence of this proposition, we define a bad set of velocities and
deflection angles for the pathological pseudo-trajectories

B(z1, J, T,m) :=
{

(νi , vi )2≤i≤JK ∈
(
Sd−1 × BE

)JK−1
∣∣∣

JK∑

k=1

v2k < E2

and ∃i0 ≤ JK − 1

such that ∀i < i0, (νi+1, vi+1) ∈
(
Bmi
i (Z0

i (ti ))
)c

and (νi0+1, vi0+1) ∈ Bmi0
i0

(Z0
i0(ti0))

}
. (5.18)

Proof We proceed by induction on i , the index of the time variables ti for
1 ≤ i ≤ JK − 1. The recursion hypothesis at step i is

Z0
i (ti ) ∈ Gi (ε0) and ∀ℓ≤ i, |xℓ(ti )−x0ℓ (ti )|≤ε(i − 1), vℓ(ti )=v0ℓ (ti ).

(5.19)
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We first notice that by construction, z1(t1) = z01(t1), so (5.19) holds for i = 1.
The initial configuration containing only one particle, there is no possible
recollision!

Assume that (5.19) holds up to some i ≤ JK −1 and let us prove that (5.19)
holds for i+1. We shall consider two cases depending on whether the particle
adjoined at time ti is pre-collisional or post-collisional.

• Let us start with the case of pre-collisional velocities (vi+1, vmi (ti )) at time
ti . We recall that the particle is adjoined in such a way that (νi+1, vi+1)
belongs to

(
Sd−1×BE

)
\Bmi

i (Z0
i (ti )). The new configuration Z0

i+1 satisfies
for all u ∈]ti+1, ti ]

∀ℓ ≤ i, x0ℓ (u) = x0ℓ (ti )+ (u − ti )vℓ(ti ), vℓ(u) = vℓ(ti ),

x0i+1(u) = x0mi
(ti )+ (u − ti )vi+1, vi+1(u) = vi+1.

Since ti −ti+1 > δ, Proposition 5.1 implies that Z0
i+1(ti+1)will be inGi+1(ε0).

Now let us study Zi+1 the BBGKYpseudo-trajectory. Provided that ε is suf-
ficiently small, by the induction assumption (5.19) and the fact that AK+1ε ≤ ā
[see (5.10)], we have

∀ℓ ≤ i, |xℓ(ti ) − x0ℓ (ti )| ≤ ε(i − 1) ≤ ā.

Since Z0
i (ti ) belongs to Gi (ε0), Proposition 5.1 implies that backwards in time,

there is free flow for Zi+1. In particular,

∀ℓ < i + 1, xℓ(u) = xℓ(ti )+ (u − ti )vℓ(ti ), vℓ(u) = vℓ(ti ),

xi+1(u) = xmi (ti )+ ενi+1 + (u − ti )vi+1, vi+1(u) = vi+1.

(5.20)

Therefore, the velocities of both configurations coincide and by the induction
assumption (5.19)

∀ℓ ≤ i + 1, ∀u ∈]ti+1, ti ], |xℓ(u) − x0ℓ (u)| ≤ ε(i − 1)+ ε ≤ εi

where we used that in (5.20) there is a shift by at most ε.

• The case of post-collisional velocities (vi+1, vmi (ti )) at time ti is identical
up to a scattering of the velocities vi+1, vmi in v∗

i+1, v
∗
mi
. Note that the

constraint
∑i+1

k=1 |v2k | < E2

2 implies that both velocities v∗
i+1, v

∗
mi

remain
in BE . This concludes the proof of Proposition 5.3. ⊓9
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5.3 Estimate of the error term

We turn now to the main goal of this section and use the coupling of Propo-
sition 5.3 between the hierachies to show that for K ≪ log log N and
αt ≪ (log log N )(A−1)/A then

∥ f (1,K )
N − g(1,K )

α ∥L∞([0,t]×Td×Rd ) → 0 (5.21)

with an explicit rate of convergence when N diverges. The coupling of Propo-
sition 5.3 can be implemented only for a reduced set of velocities taking values
in BE and for collision times separated at least by δ. Thus the first step will
be to estimate the cost of cutting-off the large velocities and the collision time
separation in (5.5) and (5.8). Then in Sect. 5.3.4, the parameters δ, E and K
will be tuned and the error term evaluated.

5.3.1 Energy truncation

Given E > 0, define the large velocity cut-off for f (1,K )
N introduced in (4.10)

as

f (1,K )
N ,E :=

∑

J

ε(d−1)(JK−1) (N − 1)!
(N − JK )!

∑

m∈MJ

F (1,K )
N ,E (J,m)

where
∑

J stands for
∑n1−1

j1=0 . . .
∑nK−1

jK=0 and the velocities in the integral (5.5)
are truncated

F (1,K )
N ,E (J,m) (t, z1) :=

∫

TJ (h)
dT
∫

(Sd−1×BE )
JK −1

d ν̄ dV̄ A(T, z1, ν̄, V̄ )

× 1{HJK (Z JK (0))≤ E2
2 }F

0(JK )
N

(
Z JK (0)

)
(5.22)

where A was defined in (5.6) and Hk(Zk) = 1
2
∑k

i=1 |vi |2.
In the same way, for g(1,K )

α in (4.12), the large velocity cut-off is defined as

g(1,K )
α,E :=

∑

J

α JK−1
∑

m∈MJ

G(1,K )
E (J,m)

where the velocities in the integral (5.8) are truncated

G(1,K )
E (J,m) (t, z1) :=

∫

TJ (h)
dT
∫

(Sd−1×BE )
JK −1

d ν̄ dV̄ Â(T, z1, ν̄, V̄ )

× 1{HJK (Z0
JK

(0))≤ E2
2 }g

0(JK )(Z0
JK (0)). (5.23)

Then, we have the following error estimate.
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Proposition 5.4 There is a constant C depending only on β and d such that,
as N goes to infinity in the scaling Nεd−1α−1 ≡ 1, the following bounds hold:

∥ f (1,K )
N − f (1,K )

N ,E ∥L∞([0,t]×Td×Rd ) + ∥g(1,K )
α − g(1,K )

α,E ∥L∞([0,t]×Td×Rd )

≤ AK (K+1)(Cαt)A
K+1

e− β
4 E

2∥ρ0∥L∞,

with A, K as in Proposition 4.3.

Proof We first consider the BBGKY hierarchy. Since the kinetic energy is
preserved by the transport Sk , the difference ( f

(1,K )
N − f (1,K )

N ,E ) can be bounded
from above by estimating the contribution of the pseudo-trajectories such that
{HJK (Z JK (0)) ≥ E2

2 } at time 0. Note that from (4.6)

∥1{HJK (Z JK )≥ E2
2 } f

0(JK )
N ∥ε,JK ,β/2 ≤ ∥ f 0(JK )N ∥ε,JK ,β e− β

4 E
2

≤ C JK e− β
4 E

2∥ρ0∥L∞ . (5.24)

By Lemma 4.2, we get

∥F (1,K )
N (J,m) − F (1,K )

N ,E (J,m)∥L∞([0,t]×Td×Rd )

≤
∥∥∥|Q|1,JK (t)1{HJK (Z JK )≥ E2

2 } f
0(JK )
N

∥∥∥
L∞([0,t]×Td×Rd )

≤
(

Ct
(β/2)(d+1)/2

)JK−1

∥1{HJK (Z JK )≥ E2
2 } f

0(JK )
N ∥ε,JK ,β/2.

It follows that

∥F (1,K )
N (J,m) − F (1,K )

N ,E (J,m)∥L∞([0,t]×Td×Rd ) ≤ (Ct)A
K+1

e− β
4 E

2∥ρ0∥L∞

thanks to (5.24) and to the fact that JK ≤ NK ≤ AK+1. A similar estimate
holds for the Boltzmann hierarchy. Summing over all possible choices of jk
proves the proposition, recalling that in the Boltzmann-Grad scaling

(εd−1)JK−1 (N − 1)!
(N − JK )!

≤ α JK−1.

Proposition 5.4 is proved. ⊓9

5.3.2 Time separation

We choose a small parameter δ > 0 such that AK δ ≪ h and estimate the
error for separating the collision times by at least δ. The time cut-off of the
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pseudo-trajectories is defined as

f (1,K )
N ,E,δ :=

∑

J

ε(d−1)(JK−1) (N − 1)!
(N − JK )!

∑

m∈MJ

F (1,K )
N ,E,δ(J,m) (5.25)

where the time integrals are restricted to the set TJ,δ(h) defined in (5.16)

F (1,K )
N ,E,δ(J,m) (t, z1) :=

∫

TJ,δ(h)
dT
∫

(Sd−1×BE )
JK −1

d ν̄ dV̄ A(T, z1, ν̄, V̄ )

× 1{HJK (Z JK (0))≤ E2
2 } f

0(JK )
N (Z JK (0))

with A(t, z1, ν̄, V̄ ) as in (5.6). In the same way, for the Boltzmann hierarchy,
we set

g(1,K )
α,E,δ :=

∑

J

α JK−1
∑

m∈MJ

G(1,K )
E,δ (J,m)

where the separation time cut-off is defined as

G(1,K )
E,δ (J,m) (t, z1) :=

∫

TJ,δ(h)
dT
∫

(Sd−1×BE )
JK −1

d ν̄ dV̄ Â(T, z1, ν̄, V̄ )

× 1{HJK (Z0
JK

(0))≤ E2
2 }g

0(JK )(Z0
JK (0)).

Then the following holds.

Proposition 5.5 There is a constant C depending only on β and d such that,
as N goes to infinity in the scaling Nεd−1α−1 ≡ 1, the following holds

∥ f (1,K )
N ,E − f (1,K )

N ,E,δ∥L∞([0,t]×Td×Rd ) + ∥g(1,K )
α,E − g(1,K )

α,E,δ∥L∞([0,t]×Td×Rd )

≤ A(K+2)(K+1)(Cαt)A
K+1 δ

t
∥ρ0∥L∞, (5.26)

with A, K as in Proposition 4.3.

Proof Given J,m the difference (F (1,K )
N ,E − F (1,K )

N ,E,δ)(J,m) involves the inte-
gration over two consecutive times such that |ti+1 − ti | ≤ δ. This leads to
a contribution δt JK−2/(JK − 2)! instead of t JK−1/(JK − 1)! and there are
JK − 1 possible choices for the collision with a short time separation. Modi-
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fying accordingly the estimates of Lemma 4.2, we get for a given J

∥∥
∑

m∈MJ

(
F (1,K )
N ,E − F (1,K )

N ,E,δ

)
(J,m)

∥∥
L∞([0,t]×Td×Rd )

≤ (Cαt)A
K+1 (AK+1)2 δ

t
∥ρ0∥L∞,

where we used that JK ≤ AK+1. Summing over all possible choices of jk
leads to an extra factor AK (K+1) as in (5.26).

A similar estimate holds in the Boltzmann case and completes the proof.
⊓9

5.3.3 Neglecting the pathological pseudo-trajectories

Wenow reduce the domain of integration of the velocities and deflection angles
outside the setB(J, T,m) defined in (5.18) in order to remove the pathological
pseudo-trajectories. We set

f̃ (1,K )
N ,E,δ =

∑

J

α JK−1
∑

m∈MJ

(
εd−1

α

)JK−1
(N − 1)!
(N − JK )!

F̃ (1,K )
N ,E,δ(J,m) (5.27)

where

F̃ (1,K )
N ,E,δ(J,m) (t, z1) :=

∫

TJ,δ(h)
dT
∫

B(J,T,m)c
d ν̄ dV̄ A(T, z1, ν̄, V̄ )

× 1{HJK (Z JK (0))≤ E2
2 } f

0(JK )
N (Z JK (0)) (5.28)

with A(t, z1, ν̄, V̄ ) as in (5.6). In the same way, we define

g̃(1,K )
α,E,δ =

∑

J

α JK−1
∑

m∈MJ

G̃(1,K )
E,δ (J,m) (5.29)

where the domain of integration is restricted to the complement of B(J, T,m)

G̃(1,K )
E,δ (J,m) (t, z1) :=

∫

TJ,δ(h)
dT
∫

B(J,T,m)c
d ν̄ dV̄ Â(T, z1, ν̄, V̄ )

× 1{HJK (Z0
JK

(0))≤ E2
2 } g

0(JK )(Z0
JK (0)). (5.30)

As a consequence of Proposition 5.1 and of the continuity estimates in Lemma
4.2, the error induced by neglecting the pathological pseudo-trajectories can
be estimated from above.
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Proposition 5.6 Let ā, ε0, δ satisfying (5.10). There is a constant C depending
only on β and d such that, as N goes to infinity in the scaling Nεd−1α−1 ≡ 1,
the following holds

∥∥∥g(1,K )
α,E,δ − g̃(1,K )

α,E,δ

∥∥∥
L∞([0,t]×Td×Rd )

+
∥∥∥ f (1,K )

N ,E,δ − f̃ (1,K )
N ,E,δ

∥∥∥
L∞([0,t]×Td×Rd )

≤ A(K+2)(K+1)(Cαt)A
K+1

(

Ed
(
ā
ε0

)d−1

+Ed(Et)dεd−1
0 + E

(ε0

δ

)d−1
)

∥ρ0∥L∞ .

Proof The proof follows the same lines as the proofs of Propositions 5.4 and
5.5. In the usual continuity estimate for the elementary collision operator, the
integration with respect to velocity brings a factor (2π/β)d/2, while removing
the integration over the pathological set Bmk

k gives an error

Ck

(

Ed
(
ā
ε0

)d−1

+ Ed
(
Et
)d

εd−1
0 + E

(ε0

δ

)d−1
)

(5.31)

according to Proposition 5.1.
For a given J , there are JK − 1 ≤ AK+1 possible choices of the integral to

be modified. Therefore, the estimate on the collision operator leads to

∥∥
∑

m∈MJ

(
F̃ (1,K )
N ,E,δ − F (1,K )

N ,E,δ

)
(J,m)

∥∥
L∞([0,t]×Td×Rd )

≤ (Ct)A
K+1

A2(K+1)

(

Ed
(
ā
ε0

)d−1

+ Ed(Et)dεd−1
0 + E

(ε0

δ

)d−1
)

∥ρ0∥L∞

where as previously C depends only on d and β. The term A2(K+1) comes
from the AK+1 possible choices of the integral to be modified and from the
additional factor k ≤ AK+1 in (5.31).

Finally summing over all the possible choices of J = ( j1, . . . , jK ) provides
the additional factor AK (K+1) in the estimate. Similar bounds hold also for the
Boltzmann hierarchy. This completes the Proposition. ⊓9

Once the pathological pseudo-trajectories have been removed, the integrals
(5.28) and (5.30) differ only by the small error on the positions Z JK (0), Z

0
JK
(0)

and by the initial data f 0(JK )N and g0(JK ). Thus, one gets
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Proposition 5.7 There is a constant C depending only on β and d such that,
as N goes to infinity in the scaling Nεd−1 = α, the following holds

∥∥∥ f̃ (1,K )
N ,E,δ − g̃(1,K )

α,E,δ

∥∥∥
L∞([0,t]×Td×Rd )

≤ AK (K+1)(Cαt)A
K+1

(
A2(K+1)

N
+ αε

)

∥ρ0∥L∞ .

Proof There are 2 sources of discrepancies between (5.27) and (5.29).

• The prefactors in the collision operators : In (5.27), the elementary collision
operators have prefactors of the type (N − k)εd−1/α that can be replaced
in the limit by 1. For fixed JK , the corresponding error is

(
1 − (N − 1) . . . (N − JK + 1)

N JK+1

)
≤ C

J 2K
N

which, combined with the bound on the collision operators, leads to an
error of the form

AK (K+1)(Cαt)A
K+1 A2(K+1)

N
∥ρ0∥L∞ .

• Discrepancy between f 0(JK )N (Z JK (0)) and g
0(JK )(Z0

JK
(0)) : First of all, we

note that for the coupled pseudo-trajectories

g0(JK )(Z JK (0)) = g0(JK )(Z0
JK (0)).

Indeed, by construction both pseudo-trajectories have the same velocities and
x1 = x01 . The differences between the two configurations are only on the
positions of the particles added and g0(JK ) is independent of these positions.

By Proposition 5.3, the initial data satisfies Z JK (0) ∈ GJK (ε0/2). According
to Proposition 3.3, we have

∥∥∥1GJK (ε0/2)

(
f 0(JK )N − g0(JK )

) ∥∥∥
0,JK ,β

≤ ∥ρ0∥L∞ C JK αε.

Using the continuity estimate in Lemma 4.2, we then deduce that the error due
to the initial data can be controlled by

∥ρ0∥L∞ AK (K+1)(Cαt)A
K+1

αε.

This concludes Proposition 5.7. ⊓9
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5.3.4 Estimate of the main term

Finally combining the previous estimates, we get

Proposition 5.8 For parameters satisfying (5.1) and such that

αt ≪
(
log log N

) A−1
A and K ≤ log log N

2 log A
(5.32)

then as N goes to infinity

∥∥ f (1,K )
N − g(1,K )

α

∥∥
L∞([0,t]×Td×Rd )

≤ ∥ρ0∥L∞ ε
d−1
d+1 exp

(
C (log N )1/2 log log N

)
. (5.33)

In particular, Estimate (5.21) follows from Proposition 5.8.

Proof We write

∥∥ f (1,K )
N − g(1,K )

α

∥∥
L∞ ≤

∥∥ f (1,K )
N − f̃ (1,K )

N ,E,δ

∥∥
L∞ +

∥∥g(1,K )
α − g̃(1,K )

α,E,δ

∥∥
L∞

+
∥∥ f̃ (1,K )

N ,E,δ − g̃(1,K )
α,E,δ

∥∥
L∞ .

Let ā, ε0, δ, E satisfying (5.10). By gathering together the estimates in Propo-
sitions 5.4, 5.5, 5.6 and 5.7, we see that there existsC depending only on β and
d such that, as N goes to infinity in the scaling Nεd−1α−1 ≡ 1, the following
holds

∥∥ f (1,K )
N − g(1,K )

α

∥∥
L∞([0,t]×Td×Rd )

≤ AK (K+1)(Cαt)A
K+1

(

e− β
4 E

2 + A2(K+1)δ

t

)

∥ρ0∥L∞

+A(K+2)(K+1)(Cαt)A
K+1

(

Ed
(
ā
ε0

)d−1

+ Ed
(
Et
)d

εd−1
0

+E
(ε0

δ

)d−1
)

∥ρ0∥L∞

+AK (K+1)(Cαt)A
K+1

(
A2(K+1)

N
+ εα

)

∥ρ0∥L∞

with A, K introduced in Proposition 4.3.
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To derive the upper bound (5.33),we choose for the parameters the following
orders of magnitude

δ ∼ ε
d−1
d+1 , ε0 ∼ ε

d
d+1 , E ∼

√
| log ε|, ā = AK+1ε.

This leads to
∥∥ f (1,K )

N − g(1,K )
α

∥∥
L∞([0,t]×Td×Rd )

≤ (C αt)A
K+1

A2K (K+1) (ε
d−1
d+1 | log ε|d + εd−1)∥ρ0∥∞

from which (5.33) can be deduced in the scaling (5.32) since AK ≤ √
log N .

Equipped with all these estimates, we prove now Theorem 2.2.

Proof of Theorem 2.2 Propositions 4.3 and 5.8 imply that with the scaling
(5.32)

∥∥ f (1)N − gα

∥∥
L∞([0,t]×Td×Rd )

≤ C
(
γ A + C0 ε

d−1
d+1 exp

(
C (log N )1/2 log log N

))
∥ρ0∥L∞

≤ C

(
(αt)A/(A−1)

log log N

)A

∥ρ0∥L∞,

where we have used the relation γ = (αt)A/(A−1)

CK of (4.13) with the choice
K = ⌊ log log N2 log A ⌋. This conludes the proof of Theorem 2.2.
Note that the relevant scaling for this upper bound is αt =

o
(
(log log N )(A−1)/A

)
. ⊓9

6 Proof of the diffusive limit: proof of Theorem 2.3

In Theorem 2.2, we have shown that the tagged particle distribution
f (1)N (t, x, v) remains close to Mβ(v)ϕα(t, x, v) where ϕα solves the linear-
Boltzmann equation (1.3) onTd ×Rd , with initial data ρ0(x). More generally,
our proof implies that the whole trajectory of the tagged particle {x1(s)}s≤T
can be approximated with high probability by the trajectory of {x01(s)}s≤T (see
Lemma 5.3). The latter process is much simpler to study as its velocities are
given by a Markov process.

These two points of view lead to two strategies to prove the diffusive limit.
We first present an analytic approach to show that ϕα(ατ, x, v) can be approx-
imated by the diffusion (2.11). Then we turn to an alternative method to show
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the convergence of the trajectory to a Brownian motion which will rely on
probabilistic estimates for {x01(ατ )}τ≤T .

In the following the macroscopic time variable will be denoted by τ ∈
[0, T ].

6.1 Convergence to the heat equation

In this section we prove the result (2.12) stating the convergence of
f (1)N (ατ, x, v) to Mβ(v)ρ(τ, x)where ρ solves the heat equation (2.11) onTd ,
with initial data ρ0(x). We show in Paragraph 6.1.1 that this can be reduced to
proving that ϕα(ατ, x, v) can be approximated by a diffusion, which is a stan-
dard procedure (see [6]). For the sake of completeness, we recall the salient
features of the proof in Paragraphs 6.1.2 and 6.1.3.

6.1.1 Approximation by the linear Boltzmann equation

The explicit convergence rate provided in Theorem 2.2 implies in particular
that for any τ > 0 and any α > 1, in the limit N → ∞, Nεd−1α−1 = 1, one
has

∥∥ f (1)N (ατ, x, v)−Mβ(v)ϕα(ατ, x, v)
∥∥
L∞(Td×Rd )

≤C

[
α2τ

(log log N )
A−1
A

] A2
A−1

,

(6.1)

where A ≥ 2 can be taken arbitrarily large. It is therefore possible to take
the limit α → ∞ while conserving a small right-hand side in (6.1), as soon
as α ≪ (log log N )

A−1
2A .

Let us define

ϕ̃α(τ, x, v) := ϕα(ατ, x, v),

which satisfies

∂τ ϕ̃α + α v · ∇x ϕ̃α + α2Lϕ̃α = 0. (6.2)

Then (2.12) follows directly from the following result

sup
τ∈[0,T ]

sup
(x,v)∈Td×Rd

∣∣∣Mβ(v)
(
ϕ̃α(τ, x, v) − ρ(τ, x)

)∣∣∣→ 0 (6.3)

in the limit α → ∞. The rest of this paragraph is devoted to the proof of (6.3).
Notice that by the maximum principle on the heat equation, we may assume
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without loss of generality (up to regularizing ρ0) that ρ0 belongs to C4(Td),
which will be useful at the end of the proof.

6.1.2 Hilbert’s expansion

The formal Hilbert expansion consists in writing an asymptotic expansion
of ϕ̃α in terms of powers of α−1

ϕ̃α(τ, x, v) = ρ̃0(τ, x, v)+
1
α

ρ̃1(τ, x, v)+
1
α2 ρ̃2(τ, x, v)+ · · · ,

in plugging that expansion in Eq. (6.2), and in canceling successively all the
powers of α. This gives formally the following set of equations (where we
have considered only the O(1), O(α) and O(α2) terms)

Lρ̃0 = 0,
v · ∇x ρ̃0 + Lρ̃1 = 0, (6.4)

∂τ ρ̃0 + v · ∇x ρ̃1 + Lρ̃2 = 0.

In order to find the expressions for ρ̃1 and ρ̃2, as well as the equation on ρ̃0
(which we expect to be the heat equation), it is necessary to be able to invert
the operator L. This is made possible by the following result, whose proof can
be found in [24] (in the case of the linearized Boltzmann equation, but it can
easily be adapted to our situation). In the following, we define

aβ(v) :=
∫

Sd−1×Rd
Mβ(v1)

(
(v − v1) · ν

)
+ dνdv1.

The proof of the next result consists in noticing the decomposition
L = aβ(v) Id − K, where Id stands for the identity and K is a compact
operator.

Lemma 6.1 The operator L is a Fredholm operator of domain
L2(Rd , aβMβdv) and its kernel reduces to the constant functions.
In particular, L is invertible on the set of functions

{
g ∈ L2(Rd , aβMβdv),

∫

Rd
g(v)Mβ(v)dv = 0

}
.

Note that the first equation in (6.4) therefore reflects the fact that ρ̃0 does not
depend on v.

We define the vector b(v) =
(
bk(v)

)
k≤d with

∫

Rd
b(v)Mβ(v)dv = 0, by

Lb(v) = v. (6.5)
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Returning to (6.4), we have

ρ̃1(τ, x, v) = ρ1(τ, x, v)+ ρ1(τ, x),

with

ρ1(τ, x, v) := −b(v) · ∇x ρ̃0(τ, x) and ρ1 ∈ KerL.

Next we consider the last equation in (6.4) and we notice that for ρ̃2 to exist
it is necessary for ∂τ ρ̃0 + v · ∇x ρ̃1 to belong to the range of L. Since ρ̃0 does
not depend on v, this means that

∂τ ρ̃0 +
∫

Rd
v · ∇x ρ̃1(τ, x, v)Mβ(v) dv = 0. (6.6)

We then define the diffusion matrix D(v) =
(
Dk,ℓ(v)

)
k,ℓ≤d , again with∫

Rd Dk,ℓ(v)Mβ(v)dv = 0, by

LD(v) := v ⊗ b(v) −
∫

Rd
v ⊗ b(v)Mβ(v)dv. (6.7)

From the symmetry of the model, one can check (see [15] for instance) that
there is a function γ such that

b(v) = γ (|v|)v.

Then an easy computation shows that ρ̃0 = ρ where

∂τρ − κβ.xρ = 0,

while the diffusion coefficient is given by

κβ := 1
d

∫

Rd
vL−1v Mβ(v)dv = 1

d

∫

Rd
γ (|v|)|v|2 Mβ(v)dv, (6.8)

and where we used the symmetry of b to derive the last equality. Finally we
have

ρ̃2(τ, x, v) = ρ2(τ, x, v)+ ρ2(τ, x) − b(v) · ∇xρ1(τ, x),

with

ρ2(τ, x, v) := D(v) : Hess ρ(τ, x) and ρ2 ∈ KerL.
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6.1.3 Proof of the convergence

Now let us prove (6.3).With the notation introduced in the previous paragraph,
let us define

3α(τ, x, v) := ρ(τ, x)+ 1
α

ρ1(τ, x, v)+
1
α2ρ2(τ, x, v). (6.9)

Then 3α is almost a solution of (6.2): by construction one has

∂τ3α + α v · ∇x3α + α2 L3α = Sα,

where the error term Sα is given by

Sα(τ, x, v) :=
1
α

(
∂τρ1(τ, x, v)+ v · ∇xρ2(τ, y, v)+

1
α

∂τρ2(τ, y, v)
)
.

(6.10)

Defining

Rα(τ, x, v) := 3α(τ, x, v) − ϕ̃α(τ, x, v)

we have thanks to (6.2)

∂τ Rα + α v · ∇x Rα + α2 LRα = Sα

and the result (6.3) then follows from the maximum principle which states
that

∥MβRα∥L∞([0,T ]×Td×Rd ) ≤ C(T )
(
∥MβRα(0)∥L∞(Td×Rd )

+∥MβSα∥L∞([0,T ]×Td×Rd )

)
.

We note that Sα involves spatial derivatives of ρ of order at most 4, thus from
the maximum principle for the heat equation, each term of MβSα is bounded
in L∞ norm by α−1. The same clearly holds for the initial data MβRα(0, x, v)
since

Rα(0, x, v) = 3α(0, x, v) − ϕ̃α(0, x, v) =
1
α

ρ1(0, x, v)+
1
α2ρ2(0, x, v).

It follows that

∥Mβ(3α − ϕ̃α)∥L∞([0,T ]×Td×Rd ) ≤ C(T )
α

and thanks to (6.9), the convergence result (6.3) is proved.
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Remark 6.2 We have considered here the case when ρ0 = ρ0(x). In the case
of ill-prepared initial data, namely if ρ0 = ϕ0(x, v), then the same analysis
works provided the following ansatz is used

3α(τ, x, v) := ρ(τ, x)+ 1
α

ρ1(τ, x, v)+
1
α2ρ2(τ, x, v)+ 4⊥ (e−ατLϕ0) ,

where 4⊥ is the orthogonal projector onto (KerL)⊥.

6.2 Convergence to the Brownian motion

Let us denote the tagged particle by

+(τ ) := x1(ατ ).

In the following, EN ,PN will refer to its expectation and probability with
respect to the initial data sampled from the density f 0N . To prove the conver-
gence of the tagged particle to a Brownian motion, one needs to check (see
[8], Chapter 2)

• The convergence of themarginals of the tagged particle sampled at different
times

lim
N→∞

EN

(
h1
(
+(τ1)

)
. . . hℓ

(
+(τℓ)

))
= E

(
h1
(
B(τ1)

)
. . . hℓ

(
B(τℓ)

))
,

(6.11)

where {h1, . . . , hℓ} is a collection of continuous functions inTd . Notice that
these marginals refer to time averages and not to the number of particles.

• The tightness of the sequence, that is for any τ ∈ [0, T ]

∀ξ > 0, lim
η→0

lim
N→∞

PN

(

sup
τ<σ<τ+η

∣∣+(σ ) − +(τ )
∣∣ ≥ ξ

)

= 0.

(6.12)

Note that (6.11) requires to understand time correlations and thus we are going
to adapt Theorem 2.2 to this new framework.

Step 1. Finite dimensional marginals. First, we are going to rewrite the
time correlations in terms of collision trees. A similar approach was devised in
Lebowitz, Spohn [30] to derive an information on the true particle trajectories
(in the physical space) from the Duhamel series. Let t1 < · · · < tℓ be an
increasing collection of times and Hℓ = {h1, . . . , hℓ} a collection of ℓ smooth
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functions. Define the biased distribution at time t > tℓ as follows
∫

TNd×RNd
d ZN fN ,Hℓ(t, ZN )#(ZN )

:= EN

(
h1
(
x1(t1)

)
. . . hℓ

(
x1(tℓ)

)
#
(
ZN (t)

))

=
∫

TNd×RNd
d ZN f 0N (ZN ) h1

(
x1(t1)

)
. . . hℓ

(
x1(tℓ)

)
#
(
ZN (t)

)
, (6.13)

for any test function #. We stress that by construction the biased distribution
fN ,Hℓ(t, ZN )

• Is in general no longer normalized by 1
• Is symmetric with respect to the N − 1 last variables.

The corresponding marginals are

f (s)N ,Hℓ
(t, Zs) :=

∫
fN ,Hℓ(t, ZN ) dzs+1 . . . dzN . (6.14)

By construction fN ,Hℓ satisfies the Liouville equation for t > tℓ and the
marginals f (s)N ,Hℓ

obey the BBGKY hierarchy (3.1) for s < N . Applying the
iterated Duhamel formula (3.5), we get

f (s)N ,Hℓ
(t) =

N−s∑

m=0

Qs,s+m(t − tℓ) f
(s+m)
N ,Hℓ

(tℓ). (6.15)

By construction fN ,Hℓ(tℓ, ZN ) = fN ,Hℓ−1(tℓ, ZN )hℓ(z1), where the new dis-
tribution is now modified by the first ℓ − 1 functions. This procedure can
be iterated up to the initial time. The backward dynamics can be under-
stood in terms of collision trees which are now weighted by the factor
h1
(
x1(t1)

)
. . . hℓ

(
x1(tℓ)

)
associated with the motion of the tagged particle

f (1)N ,Hℓ
(t) =

N−1∑

m1+···+mℓ=0

Q1,1+m1(t − tℓ)
(
hℓQ1+m1,1+m2(tℓ − tℓ−1)

(
hℓ−1 . . .

Q1+m1+···+mℓ−1,1+m1+···+mℓ(t1)
)
f (1+m1+···+mℓ)
N (0). (6.16)

This identity holds for any N and any time.
In order to check (6.12), we need also to generalize the identity to consider

correlations of the form

EN
(
h
(
x1(t1) − x1(s)

)
. . . h

(
x1(tℓ) − x1(s)

))
(6.17)
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for a smooth function h with s < t1 < · · · < tℓ. Using a partition of unity
{8ξ

i } centered at points γi ∈ Td with mesh ξ , one can approximate h

h(x − y) =
∑

i, j

h(γi − γ j )8
ξ
j (x)8

ξ
i (y)+ O(ξ).

This allows us to use the identity (6.16) for any accuracy ξ > 0 of the approx-
imation. Thus (6.17) can be computed in terms of collision trees which are
now weighted by the factor h

(
x1(t1) − x1(s)

)
. . . h

(
x1(tℓ) − x1(s)

)
.

Step 2. The limit process. In the Boltzmann Grad limit, the memory of the
system is lost and the tagged particle behavior becomes equivalent to aMarkov
process. We define

x̄1(t) = x̄1(0)+
∫ t

0
v̄1(s) ds (6.18)

as an additive functional of the Markov chain {v̄1(s)}s≥0 with generator
αL introduced in (1.3). Initially (x̄1(0), v̄1(0)) is distributed according to
ρ0(x)Mβ(v). The expectation associated to this Markov chain is denoted by
EMβ .

Let t1 < · · · < tℓ be an increasing collection of times and Hℓ = {h1, . . . , hℓ}
a collection of ℓ smooth functions.As in (6.13),we define gα,Hℓ(t) as the biased
distribution of the Markov chain z̄1(t) =

(
x̄1(t), v̄1(t)

)

∀t ∈ [tk, tk+1],∫

Td×Rd
gα,Hℓ(t, z)#(z) dz = EMβ

(
h1
(
x̄1(t1)

)
. . . hℓ

(
x̄1(tℓ)

)
#
(
z̄1(t)

))
,

with tℓ+1 = ∞. One can consider a measure [cf. (3.11)] including as well the
background density of an ideal gas. The marginals of this measure are

g(s)α,Hℓ
(t, Zs) = gα,Hℓ(t, z1)

s∏

i=2

Mβ(vi ). (6.19)

As in (6.16), the distribution can be rewritten in terms of a Duhamel series

gα,Hℓ(t) =
∞∑

m1+···+mℓ=0

Q0
1,1+m1

(t − tℓ)
(
hℓQ0

1+m1,1+m2
(tℓ − tℓ−1)

(
hℓ−1 . . .

Q0
1+m1+···+mℓ−1,1+m1+···+mℓ

(t1)
)
g(1+m1+···+mℓ)
α,Hℓ

(0). (6.20)

This representation allows us to rephrase the Markov chain expectations in
terms of the Boltzmann hierarchy. In this series, a lot of cancelations occur
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t

z1

Fig. 5 Acollision tree for theBoltzmann hierarchy is depicted. The path of z1 is the backbone of
the tree with branchings at each new collision. There cannot be further branches as any collision
with a new particle would lead to a cancellation in the collision operator. Thus the trees involving
the branches in dashed line do not contribute to the Duhamel series in the Boltzmann hierarchy

(see Fig. 5). Indeed, the only relevant collision trees are made of a single
backbone (the trajectory of z01) with branches representing the collisions of z

0
1

with the ideal gas, but no further ramification. In step 3, we shall not use these
cancellations and simply compare the series (6.16) and (6.20) term by term in
order to show that in the Boltzmann Grad limit when α ≪ √

log log N

lim
α→∞EMβ

(
h1
(
x̄1(ατ1)

)
. . . hℓ

(
x̄1(ατℓ)

))
−EN

(
h1
(
x1(ατ1)

)
. . . hℓ

(
x1(ατℓ)

))
=0.

(6.21)

As L has a spectral gap, the invariance principle holds for the position of
the Markov process x̄1 (see [27] Theorem 2.32 page 74). This implies the
convergence of the rescaled finite dimensional marginals towards the ones of
the Brownian motion B with variance κβ [see (6.8)], i.e. that for any smooth
functions {h1, . . . , hℓ} defined in Td ,

lim
α→∞EMβ

(
h1
(
x̄1(ατ1)

)
. . . hℓ

(
x̄1(ατℓ)

))
= E

(
h1
(
B(τ1)

)
. . . hℓ

(
B(τℓ)

))
.

(6.22)

The diffusion coefficient κβ defined in (6.8) can be interpreted in terms of the
variance of the position properly rescaled in time (see [27] page 47).

Step 3. Approximation of the finite dimensional marginals. We turn now to
the proof of (6.21) which combined with (6.22) will show the convergence
(6.11) of the marginals of the tagged particle sampled at different times.

Suppose now that the collection Hℓ satisfies the uniform bounds on Td

∀i ≤ ℓ, 0 ≤ hi (x1) ≤ m. (6.23)
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Thus the f (s)N ,Hℓ
satisfy the maximum principle (4.2) with an extra factor mℓ.

The pruning procedure on the collision trees therefore applies also in this case
and enables us to restrict to trees with at most AK+1 collisions during the time
interval [0, t]. Furthermore, the comparison of the trajectories for f (1)N ,Hℓ

and
gα,Hℓ can be achieved in the same way as before on a tree with less than AK+1

collisions and no recollisions. Analogous bounds as in Proposition 5.7 can be
obtained, but one has to take into account that the trees are now weighted by
h1
(
x01(ατ1)

)
. . . hℓ

(
x01(ατℓ)

)
. We recall that the pseudo-trajectories of x1 and

x01 coincide at any time, thus bounds similar to (2.9) hold

∥∥ f (1)N ,Hℓ
(ατ, y, v) − gα,Hℓ(ατ, y, v)

∥∥
L∞(Td×Rd )

≤ Cmℓ ∥ρ0∥∞

[
τα2

(log log N )
A−1
A

] A2
A−1

. (6.24)

This implies (6.21), hence (6.11) thanks to (6.22).
Step 4. Tightness. In order to evaluate (6.12), it is enough to sample the

trajectory of the tagged particle at the times τi = {τ+ uN
α i}i≤ℓN for uN = 1

log N
and with ℓN := αη/uN . Indeed, we can decompose the path deviations into
two terms

PN

(

sup
τ<σ<τ+η

∣∣+(σ ) − +(τ )
∣∣ ≥ 2ξ

)

≤ 1 − PN

⎛

⎝
ℓN⋂

i=1

{∣∣+(τi ) − +(τ )
∣∣ < ξ

}
⎞

⎠

+
ℓN∑

i=1

PN

(

sup
τi<σ<τi+1

∣∣+(σ ) − +(τi )
∣∣ ≥ ξ

)

. (6.25)

We shall first evaluate the last term in the right-hand side which involves only
events occurring in a microscopic time scale of length uN . Given i ≤ ℓN , let
ti := iuN + ατ and ti+1 := uN + ti then

PN

(

sup
τi<σ<τi+1

∣∣+(σ ) − +(τi )
∣∣ ≥ ξ

)

= PN

(

sup
ti<s<ti+1

∣∣x1(s) − x1(ti )
∣∣ ≥ ξ

)

.

In order to control the tagged particle fluctuations, it is enough to bound its
velocity in the time interval [ti , ti+1]
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PN

(

sup
ti<s<ti+1

∣∣
∫ s

ti
v1(s′)ds′∣∣ ≥ ξ

)

≤ PN

(∫ ti+1

ti

∣∣v1(s′)
∣∣ds′ ≥ ξ

)

≤ ∥ρ0∥∞ P̂N

(∫ uN

0

∣∣v1(s′)
∣∣ds′ ≥ ξ

)
,

where we used the maximum principle in the last inequality and P̂N denotes
the dynamics starting from the invariantmeasureMN ,β . Following the strategy
in [2] to bound this probability, we write

P̂N

(∫ uN

0

∣∣v1(s′)
∣∣ds′ ≥ξ

)
≤exp

(
− ξ

uN

)
ÊN

(
exp

(
1
uN

∫ uN

0

∣∣v1(s′)
∣∣ds′

))
.

Using Jensen’s inequality and the invariant measure, we get

ÊN

(
exp

(
1
uN

∫ uN

0

∣∣v1(s′)
∣∣ds′

))
≤ 1

uN

∫ uN

0
ds′ ÊN

(
exp

(∣∣v1(s′)
∣∣))

= EMN ,β

(
exp

(∣∣v1
∣∣)) ≤ cβ,

where cβ is a constant depending only on β. Since uN = 1
log N , we have shown

that for any ξ > 0, the probability of a deviation in a very short time vanishes
when N goes to infinity

ℓN∑

i=1

PN

(

sup
τi<σ<τi+1

∣∣+(σ ) − +(τi )
∣∣≥ξ

)

≤ cβ ℓN exp (−ξ log N ) −−−−→
N→∞

0.

The tightness for the process x̄1 derived in [27] (Theorem2.32 page 74) implies
that for any ξ > 0 and ℓN = αη/uN

lim
η→0

lim
N→∞

PMβ

⎛

⎝
ℓN⋂

i=1

{∣∣x̄1(ατi ) − x̄1(ατ )
∣∣ < ξ/2

}
⎞

⎠ = 1.

By comparison, we are going to show that the same result holds also for the
tagged particle x1. Using (6.25), this will complete the proof of (6.12).

Let hξ (w) = 1{|w|≤ξ/2}, then it is enough to show that

∣∣∣∣∣∣
EN

⎛

⎝
ℓN∏

i=1

hξ

(
x1(ατi ) − x1(ατ )

)
⎞

⎠− EMβ

⎛

⎝
ℓN∏

i=1

hξ

(
x̄1(ατi ) − x̄1(ατ )

)
⎞

⎠

∣∣∣∣∣∣

≤ C∥ρ0∥∞

[
τα2

(log log N )
A−1
A

] A2
A−1

. (6.26)
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At this stage, it is enough to use the fact that probabilities of the form (6.17) can
also be evaluated in terms of weighted trees as in Step 1. Since hξ is bounded
by 1, the maximum principle applies uniformly in ℓN . The tree decomposi-
tion and the reduction to non pathological trajectories hold as in the previous
proof. For good pseudo-trajectories, the paths of x1 and x01 coincide, therefore
modifying the Duhamel series by

∏ℓN
i=1 hξ

(
x1(ατi ) − x1(ατ )

)
does not alter

the comparison established in Proposition 5.7. This concludes the proof of
tightness.
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7 Appendix A: Asymptotic control of the exclusion

For the sake of completeness, we recall here the proof of Proposition 3.2. We
omit all subscripts β to simplify the presentation.

• First step: asymptotic behaviour of the partition function.

We first prove that in the scaling Nεd−1 ≡ α, with α ≪ 1/ε,

1 ≤ Z−1
N ZN−s ≤

(
1 − εακd

)−s
, (7.1)

where κd denotes the volume of the unit ball in Rd . The first inequality is due
to the immediate upper bound

ZN ≤ ZN−s .

Let us prove the second inequality. We have by definition

Zs+1 =
∫

Td(s+1)

⎛

⎝
∏

1≤i ̸= j≤s+1

1|xi−x j |>ε

⎞

⎠ dXs+1.

By Fubini’s equality, we deduce

Zs+1=
∫

Tds

⎛

⎝
∫

Td

⎛

⎝
∏

1≤i≤s

1|xi−xs+1|>ε

⎞

⎠ dxs+1

⎞

⎠

⎛

⎝
∏

1≤i ̸= j≤s

1|xi−x j |>ε

⎞

⎠ dXs .

123

Author's personal copy



548 T. Bodineau et al.

Since

∫

Td

⎛

⎝
∏

1≤i≤s

1|xi−xs+1|>ε

⎞

⎠ dxs+1 ≥ 1 − κdsεd ,

we deduce the lower bound

Zs+1 ≥ Zs(1 − κdsεd) ≥ Zs(1 − κdεα),

where we used s ≤ N and the scaling Nεd−1 ≡ α. This implies by induction

ZN ≥ ZN−s
(
1 − εακd

)s
.

That proves (7.1).

• Second step: convergence of the marginals.

Let us introduce the short-hand notation

dZ(s+1,N ) := dzs+1 . . . dzN .

We compute for s ≤ N

M (s)
N (Zs)

= Z−1
N 1Zs∈Ds

ε

(
β

2π

) sd
2

exp
(

−β

2
|Vs |2

)

×
∫

Rd(N−s)

(
β

2π

) (N−s)d
2

exp

(

−β

2

N∑

i=s+1

|vi |2
)

dV(s+1,N )

×
∫

Td(N−s)

⎛

⎝
∏

s+1≤i ̸= j≤N

1|xi−x j |>ε

⎞

⎠

⎛

⎝
∏

i ′≤s< j ′
1|xi ′−x j ′ |>ε

⎞

⎠× dX(s+1,N ).

We deduce, by symmetry,

M (s)
N = Z−1

N 1Zs∈Ds
ε
M⊗s

(
ZN−s − Z♭

(s+1,N )

)
(7.2)

with the notation

Z♭
(s+1,N ) :=

∫

Td(N−s)

⎛

⎝1−
∏

i≤s< j

1|xi−x j |>ε

⎞

⎠
∏

s+1≤k ̸=ℓ≤N

1|xk−xℓ|>ε dX(s+1,N ).
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From there, the difference 1Zs∈Ds
ε
M⊗s − M (s)

N decomposes as a sum

1Zs∈Ds
ε
M⊗s − M (s)

N =
(
1 − Z−1

N ZN−s

)
1Zs∈Ds

ε
M⊗s

+Z−1
N Z♭

(s+1,N )1Zs∈Ds
ε
M⊗s . (7.3)

By (7.1), there holds 1−Z−1
N ZN−s → 0 as N → ∞, for fixed s. Since M⊗s

is uniformly bounded, this implies that the first term in the right-hand side of
(7.3) tends to 0 as N goes to ∞. Besides, by

0 ≤ 1 −
∏

i≤s< j

1|xi−x j |>ε ≤
∑

i≤s< j

1|xi−x j |<ε,

we bound

Z♭
(s+1,N )

≤
∑

1≤i≤s

∫

Td(N−s)

⎛

⎝
∑

s+1≤ j≤N

1|xi−x j |<ε

⎞

⎠
∏

s+1≤k ̸=ℓ≤N

1|xk−xℓ|>ε dX(s+1,N ).

Given 1 ≤ i ≤ s, there holds by symmetry and Fubini’s equality,

∫

Td(N−s)

⎛

⎝
∑

s+1≤ j≤N

1|xi−x j |<ε

⎞

⎠
∏

s+1≤k ̸=l≤N

1|xk−xl |>ε dX(s+1,N )

≤ (N−s)
∫

Td
1|xi−xs+1|<ε dxs+1

∫

Td(N−s−1)

∏

s+2≤k ̸=l≤N

1|xk−xl |>ε dX(s+2,N )

= (N − s)
∫

Td
1|xi−xs+1|<ε dxs+1 × ZN−s−1,

so that

Z♭
(s+1,N ) ≤ s(N − s)εdκdZN−s−1. (7.4)

By (7.1), we obtain

Z−1
N Z♭

(s+1,N ) ≤ εαsκd
(
1 − εακd

)−(s+1)
,

and the upper bound tends to 0 as N → ∞, for fixed s. This implies conver-
gence to 0 of the second term in the right-hand side of (7.3).

This completes the proof of Proposition 3.2.
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8 Appendix B: Recollisions in the torus

We show here how to adapt the arguments of [21] to prove Lemma 5.2.

• To build the set of “bad velocities”, we use the correspondence between
the torus and the whole space with periodic structure. Asking that there
exists u ∈ [0, t] such that

d
(
(x1 − v1u), (x2 − v2u)

)
≤ ε,

boils down to having

(x1 − v1u) − (x2 − v2u) ∈
⋃

k∈Zd

Bε(k).

Then, by the triangular inequality and provided that ε < ā,

(x01 − v1u) − (x02 − v2u) ∈
⋃

k∈Zd

B3ā(k).

Now, since |v1 − v2| ≤ 2E and u ∈ [0, t], this implies that

s(v1 − v2) ∈

⎛

⎝
⋃

k∈Zd

B3ā(x01 − x02 + k)

⎞

⎠ ∩ B0(2Et).

In other words, v1 − v2 has to belong to a finite union of cones of vertex 0
• At most one of which is of solid angle (ā/ε0)d−1;
• The other ones (at most (4Et)d ) are of solid angle c ād−1.
The intersection K (x̄1 − x̄2, ε0, ā) of these cones and of the sphere of radius
2E is of size

|K (x̄1 − x̄2, ε0, ā)| ≤ CEd
(( ā

ε0

)d−1
+ (Et)d ād−1

)
.

• In order to prove the second estimate, we need to refine a little bit the
previous argument. Asking that there exists u ∈ [δ, t] such that

d((x1 − v1u), (x2 − v2u)) ≤ ε0,

boils down to having

u(v1 − v2) ∈ B3ε0(x
0
1 − x02 + k), (8.1)

for some k ∈ Zd ∩ B2Et (x02 − x01).
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• If |x01 − x02 + k| ≥ 1/4, condition (8.1) implies that v1 − v2 belongs to
the intersection of B2E (0) and some cone of vertex 0 and solid angle
εd−1
0 .

• If |x01 − x02 + k| ≤ 1/4 (which can happen only for one value of k),
denoting by n any unit vector normal to x̄1 − x̄2 + k, we deduce from
(8.1) that

u|(v1 − v2) · n| ≤ 3ε0

fromwhichwe deduce that v1−v2 belongs to the intersection of B2E (0)
and some cylinder of radius ε0/δ.

The union Kδ(x01 − x02 , ε0, ā) of these “bad” sets is therefore of size

|Kδ(x01 − x02 , ε0, ā)| ≤ CE
((ε0

δ

)d−1
+ Ed−1(Et

)d
ε0

d−1
)
.

The lemma is proved. ⊓9
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19. Erdős, L., Salmhofer, M., Yau, H.T.: Quantum diffusion of the random Schrodinger evolu-
tion in the scaling limit. Acta Math. 200(2), 211–278 (2008)

20. Esposito, R., Marra, R., Yau, H.T.: Navier–Stokes equations for stochastic particle systems
on the lattice. Comm. Math. Phys. 182, 395–456 (1996)

21. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: the case of hard-
spheres and short-range potentials, Zürich lectures in advanced mathematics 18. Erratum
to Chapter 5 (2014)

22. Gallavotti, G.: Statistical mechanics. A short treatise. Texts and monographs in physics.
Springer, Berlin (1999)

23. Golse, F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci.
Toulouse Math. 17, 735–749 (2008)

24. Hilbert, D.: Begründung der kinetischenGastheorie. (German).Math. Ann. 72(4), 562–577
(1912)

25. Kac, M.: Probability and related topics in physical sciences, Am. Math. Soc., p. 1 (1959)
26. King, F.: BBGKY hierarchy for positive potentials, Ph.D. dissertation, Dept. Mathematics,

Univ. California, Berkeley (1975)
27. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Time symmetry

andmartingale approximation. Grundlehren derMathematischenWissenschaften, vol. 345.
Springer, Heidelberg (2012)

28. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Lecture notes
in physics, vol. 38, pp. 1–111, Springer (1975)

29. Lebowitz, J., Spohn, H.: Microscopic basis for Fick’s law for self-diffusion. J. Stat. Phys.
28, 539–556 (1982)

30. Lebowitz, J., Spohn, H.: Steady state self-diffusion at low density. J. Stat. Phys. 29, 39–55
(1982)

31. Lorentz, H.: Lemouvement des électrons dans lesmétaux. Arch. Neerl. 10, 336–371 (1905)
32. Marklof, J.: Kinetic transport in crystals. In: Proceedings of the XVI International Congress

on Mathematical Physics, Prague 2009, World Scientific, pp. 162–179 (2010)
33. Marklof, J., Strömbergsson, A.: The Boltzmann–Grad limit of the periodic Lorentz gas.

Ann. Math. 174, 225–298 (2011)
34. Marklof, J., Toth, B.: Superdiffusion in the periodic Lorentz gas, arXiv:1403.6024, preprint

(2014)
35. Pettersson, R.: On weak and strong convergence to equilibrium for solutions to the linear

Boltzmann equation. J. Stat. Phys. 72, 355–380 (1993)
36. Olla, S., Varadhan, S., Yau, H.-T.: Hydrodynamical limit for a Hamiltonian system with

weak noise. Commun. Math. Phys. 155, 523–560 (1993)
37. Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for

short range potentials. Rev. Math. Phys. 26(2), 1450001 (2014)
38. Quastel, J., Yau, H.-T.: Lattice gases, large deviations, and the incompressible Navier–

Stokes equations. Ann. Math. 148, 51–108 (1998)

123

Author's personal copy

http://arxiv.org/abs/1403.6024


The Brownian motion as the limit… 553

39. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. Lecture notes in
mathematics, vol. 1971, Springer (2009)

40. Simonella, S.: Evolution of correlation functions in the hard sphere dynamics. J. Stat. Phys.
155(6), 1191–1221 (2014)

41. Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math.
Phys. 60, 277–290 (1978)

42. Spohn, H.: Large scale dynamics of interacting particles, vol. 174, Springer (1991)
43. Szasz, D., Toth, B.: Towards a unified dynamical theory of the Brownian particle in an ideal

gas. Comm. Math. Phys. 111, 41–62 (1987)
44. Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima

Math. J. 18(2), 245–297 (1988)

123

Author's personal copy


	The Brownian motion as the limit of a deterministic system of hard-spheres
	Abstract
	1 Introduction
	1.1 From microscopic to macroscopic models
	1.2 Linear regimes

	2 Strategy and main results
	2.1 The Lorentz gas
	2.2 Interacting gas of particles
	2.3 Main results
	2.4 Generalizations
	2.5 Structure of the paper

	3 Formal derivation of the low density limit
	3.1 The series expansion
	3.2 Asymptotic factorization of the initial data
	3.3 The limiting hierarchy and the linear Boltzmann equation

	4 Control of the branching process
	4.1 A priori estimates coming from the maximum principle
	4.2 Continuity estimates for the collision operators
	4.3 Collision trees of controlled size
	4.4 Estimates of the remainders

	5 Proof of the convergence
	5.1 Reformulation in terms of pseudo-trajectories
	5.2 Reduction to non-pathological trajectories
	5.2.1 The elementary step
	5.2.2 Induction procedure for the pseudo-trajectories

	5.3 Estimate of the error term
	5.3.1 Energy truncation
	5.3.2 Time separation
	5.3.3 Neglecting the pathological pseudo-trajectories
	5.3.4 Estimate of the main term


	6 Proof of the diffusive limit: proof of Theorem 2.3
	6.1 Convergence to the heat equation
	6.1.1 Approximation by the linear Boltzmann equation
	6.1.2 Hilbert's expansion
	6.1.3 Proof of the convergence

	6.2 Convergence to the Brownian motion

	Acknowledgments
	7 Appendix A: Asymptotic control of the exclusion
	8 Appendix B: Recollisions in the torus
	References


